Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A straightforward, rapid and continuous method to protect MOF nanocrystals against water

Abstract:
An article in Advanced Materials magazine presents a one-step, alternative, rapid, and scalable spray-drying (SD) synthesis of Metal-Organic Framework (MOF) nanocrystals coated with organic polymers composites) with enhanced hydrolytic stabilities. This method, which should enable molecular fabrication of various functional composites for a wide array of industrial applications, has been described by the Supramolecular NanoChemistry & Materials Group led by ICREA Research Prof Daniel Maspoch.

A straightforward, rapid and continuous method to protect MOF nanocrystals against water

Barcelona, Spain | Posted on February 9th, 2015

Many Metal-Organic Frameworks are water labile, including the iconic Hong-Kong University of Science and Technology-1 (HKUST-1), which is very promising for many industrial applications. In an article published in Advanced Materials magazine and signed by RyC researcher Inhar Imaz and ICREA Research Prof Dr Daniel Maspoch, researchers from the Institut Catalŕ de Nanocičncia i Nanotecnologia (ICN2) belonging to the Supramolecular NanoChemistry & Materials Group have reported that spray-drying encapsulation of nanocrystals of HKUST-1 into polystyrene microspheres is a straightforward, rapid and continuous method to protect the compound against liquid water and water vapours. Their method does not require any filtration or purification steps, since the composites are obtained directly in a dried, pure form.

Although encapsulation always implies a compromise between the protection offered by polystyrene and the pore accessibility of the encapsulated porous material, spray-drying has enabled the authors to fine-tune the HKUST-1/PS ratio to achieve optimal trade-off in their composites: they are resistant to liquid or vapour water yet retain most of the excellent gas sorption capacity of HKUST-1. In these composites, the polymer protects the embedded MOF crystals against water molecules, without substantially decreasing their initial sorption capacity, and increases their water resistance in terms of porosity properties.

As in Metal-Organic Framework (MOF) mix matrix membranes, the permeability of the organic polymer in the composite should be one of the key factors to understand and enhance the gas and vapour transport towards the embedded MOF crystals. Here, for example, further experimentation aimed to study the water uptake kinetics is currently underway. Nevertheless, this method should enable molecular fabrication of various functional composites, based on the ever-expanding pool of MOFs and organic polymers, for a wide array of industrial applications such as CO2 capture from flue gas streams, heat pumps, or adsorption chillers.

####

For more information, please click here

Contacts:
Alicia Labian

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project