Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene senses DNA hybridization and kills bacteria

Image: Detection of DNA hybridization with the help of graphene.
Image: Detection of DNA hybridization with the help of graphene.

Abstract:
Graphene, among the many interesting predicted applications, is an excellent material for biosensing and medical purposes. Graphenea's scientific team collaborated with researchers from France's CNRS and SENSIA SL to utilize graphene as a DNA biosensor and to destroy harmful bacteria.

Graphene senses DNA hybridization and kills bacteria

San Sebastian, Spain | Posted on February 5th, 2015

Carbon, the only ingredient of graphene, has very low toxicity, and is thus interesting for use in human health. The peculiar response that graphene has to light turns out to also come in handy for medical applications. For example, graphene absorbs 2.3% of incident light over the entire visible part of the spectrum, which is remarkably high absorption for a single atomic layer. Graphene oxide absorbs even more, converting the incident light into heat. Heat generation by nanoparticles has earlier been used for the destruction of cancer cells, and recently even graphene oxide itself served the same purpose. However, our result is the first to consider using the same approach to target harmful bacteria, in this case exemplified by Escherichia coli (E. coli).

Like any other pathogen, E. coli, typically associated with infections of the urinary tract, reproduces quickly, posing a major threat to human health and society at large. Many bacterial infections share several dangerous characteristics such as chronic inflammation and tissue damage, which are greatly exacerbated when microorganisms grow in continuous "biofilms". The threat of biofilm-related infections has grown in the past decades due to bacteria becoming resistant to antibiotics, a phenomenon that is closely related with the overuse and misuse of antibiotics.

Considering the increased resistance of bacteria to antibiotics, non-biocidal strategies for getting rid of bacteria are being considered. Recent advances in nanotechnology have provided the foundation for using near-infrared (NIR) light-absorbing gold nanostructures in the treatment of bacterial infections via irradiation with focused laser pulses at suitable wavelengths. Light absorbed by the gold nanostructures can efficiently be converted into localized heat energy and used for the hyperthermic destruction of pathogens. Gold nanostructures absorb light in the NIR (700-900 nm) part of the spectrum, which safely passes through biological tissue. However, a concern with gold nanorods is the toxicity of the surfactant chemical used in their production.

An alternative material recently considered for photothermal therapy is reduced graphene oxide (rGO), which is also a good absorber of light. rGO-based nanocomposites have been proposed for cancer theranostics, however this approach has sparsely been applied to the destruction of pathogens. This is even more surprising when considering that graphene oxide is widely available on the market.

In our recent paper, published in the Journal of Materials Chemistry B, we studied the possibility to kill E. coli pathogens using reduced graphene oxide (rGO-PEG-NH2) and Au nanorods (Nrs) coated with rGO-PEG-NH2 by laser irradiation. The encapsulation of Au NRs with rGO-PEG not only decreases the toxicity of Au NRs, but also enhances the overall photothermal process and thus the temperatures which can be reached. We demonstrated 99% killing efficiency of bacteria in a water solution, at low concentrations (20-49 mg/ml). We've thus shown that graphene oxide acts as a good anti-pathogen agent, and we believe that our research is just a start of a promising new direction of using rGO as a medicine.

In a separate paper as part of the same collaboration, researchers have shown that a graphene layer on gold can act as an excellent sensor of DNA hybridization, with amazing attomolar sensitivity.

Our work, entitled "Highly Sensitive Detection of DNA Hybridization on Commercialized Graphene-Coated Surface Plasmon Resonance Interfaces" and published in the journal Analytical Chemistry, demonstrated sensitivity of detection of DNA with a concentration of a few attomoles, using a commercial (SENSIA SL) surface plasmon resonance instrument. In the work, we used our high quality CVD graphene grown on metal and transferred onto the detection chip.

Graphenea strives to continue its research excellence through intensive collaboration with the world's leading scientists, pushing the frontiers of the knowledge and applications of graphene.

####

For more information, please click here

Contacts:
Headquarters
Graphenea
Avenida de Tolosa, 76
20018 - Donostia/San Sebastián
Spain

Copyright © Graphenea

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Graphene/ Graphite

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project