Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Performance Drop in Solar Cells Prevented by Nanotechnology

Abstract:
Iranian researchers used nanotechnology to produce solar cells that have high efficiency in the conversion of solar energy to electricity.

Performance Drop in Solar Cells Prevented by Nanotechnology

Tehran, Iran | Posted on February 1st, 2015

Efforts have been made in this research to use cheap and available raw materials.

In addition to synthesis of organic dye materials to be used in solar cells, in this research some materials were used as anti-accumulation agents in titanium dioxide nanostructure and the performance of the solar cells was studied.

According to Dr. Mojgan Hossein-nejad, dye sensitized solar cells (DSSCs) have right efficiency in the conversion of light to electricity. However, the organic dye materials used in the solar cells have high potential to accumulate on titanium dioxide bed. The application of anti-accumulation agents is one of the practical methods for decreasing the accumulation of dye materials.

The appropriate deposition of dye materials (in form of single-layer) has an important effect on electron transfer to the surface of titanium dioxide. Since the accumulation of organic dye materials on the electrode bed decreases the electron transfer, the main objective of the research was to improve the performance of solar cells by using anti-accumulation agents.

In this research, cholic acid and cheno anti-accumulation agents have been used to prevent the accumulation of dye materials based on indigos.

Results of the research showed that addition of the anti-accumulation agent increases the sorption of organic dye materials and decreases their accumulation on the surface of titanium dioxide nanoparticles. In addition, it also increases the efficiency of the conversion of light to electricity.

Results of the research have been published in Materials Technology, vol. 30, issue 3, 2015, pp. 189-192.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project