Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing

A microscopic image shows the extensive infiltration of robust blood vessels (red) in a new hydrogel scaffold developed at Rice University to help the healing of internal injuries. The purple cells are pericyte-like cells that surround new endothelial cells, helping to stabilize the vessels. The green cells are circulating through the new vascular system.
CREDIT: Vivek Kumar/Rice University
A microscopic image shows the extensive infiltration of robust blood vessels (red) in a new hydrogel scaffold developed at Rice University to help the healing of internal injuries. The purple cells are pericyte-like cells that surround new endothelial cells, helping to stabilize the vessels. The green cells are circulating through the new vascular system.

CREDIT: Vivek Kumar/Rice University

Abstract:
Rice University scientists have found the balance necessary to aid healing with high-tech hydrogel.

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing

Houston, TX | Posted on January 20th, 2015

Rice chemist Jeffrey Hartgerink, lead author Vivek Kumar and their colleagues have created a new version of the hydrogel that can be injected into an internal wound and help it heal while slowly degrading as it is replaced by natural tissue.

Hydrogels are used as a scaffold upon which cells can build tissue. The new hydrogel overcomes a host of issues that have kept them from reaching their potential to treat injuries and forming new vasculature to treat heart attack, stroke and ischemic tissue diseases.

The research appears this month in the American Chemical Society journal ACS Nano.

The Rice lab's hydrogel is made of a self-assembling synthetic peptide that forms nanofiber scaffolds. Like earlier versions, the material can be injected in liquid form and turns into a nanofiber-infused gel at the site of the injury.

Without blood to deliver oxygen and nutrients and carry out waste, new tissue growth is limited. So synthetic peptides that form the hydrogel incorporate a mimic of vascular endothelial growth factor, a signal protein that promotes angiogenesis, the growth of a network of blood vessels. In simulations and lab tests, the material works "extraordinarily well," Hartgerink said.

"One thing that differentiates our work is the quality of the blood vessels that are formed," he said. "In a lot of the published literature, you see rings that only have the endothelial cell lining, and that indicates a very immature blood vessel. These types of vessels usually don't persist, and disappear shortly after they show up.

"In ours, you see that same endothelial cell layer, but surrounding it is a smooth muscle cell layer that indicates a much more mature vessel that's likely to persist."

In previous studies, implanted synthetic materials tended to become encapsulated by fibrous barriers that kept cells and blood vessels from infiltrating the scaffold, Hartgerink said.

"That is an extremely common problem in synthetic materials put into the body," he said. "Some avoid this problem but if the body doesn't like a material and isn't able to destroy it, the solution is to wall it off. As soon as that happens, the flow of nutrients across that barrier decreases to almost nothing. So the fact that we've developed syringe-directed delivery of a material that doesn't develop fibrous encapsulation is really important."

Characteristics of earlier hydrogels, including unwanted immune responses, surface degradation preceding their integration into biological systems and the release of artificial degradation byproducts, have also been eliminated, he said.

"There are a lot of features about this hydrogel that come together to make it a unique system," Hartgerink said. "If you look through the literature at what other people have done, each concept that is involved in our system probably exists somewhere already. The difference is that we have all these features in one place working together."

###

The lab based at Rice's BioScience Research Collaborative is collaborating with Texas Heart Institute to validate the new hydrogels.

Co-authors are Rice undergraduate students Nichole Taylor, Siyu Shi and Benjamin Wang and graduate students Abhishek Jalan, Marci Kang and Navindee Wickremasinghe. Kumar is a postdoctoral research fellow in Hartgerink's group. Hartgerink is a professor of chemistry and of bioengineering.

The Robert A. Welch Foundation and the National Institutes of Health supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth

713-348-6327

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Hartgerink Research Group:

Rice Department of Bioengineering:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project