Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed

This is an illustration of the electrically controlled energy flow into photons and plasmons.
CREDIT: ICFO
This is an illustration of the electrically controlled energy flow into photons and plasmons.

CREDIT: ICFO

Abstract:
At the heart of lasers, displays and other light-emitting devices lies the emission of photons. Electrically controlled modulation of this emission is of great importance in applications such as optical communication, sensors and displays. Moreover, electrical control of the light emission pathways opens up the possibility of novel types of nano-photonics devices, based on active plasmonics.

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed

Barcelona, Spain | Posted on January 20th, 2015

Scientists from ICFO, MIT, CNRS, CNISM and Graphenea have now demonstrated active, in-situ electrical control of the energy flow from erbium ions into photons and plasmons. The experiment was implemented by placing the erbium emitters a few tens of nanometers away from the graphene sheet, whose carrier density (Fermi energy) is electrically controlled. Partially funded by the EC Graphene Flagship, this study entitled "Electrical control of optical emitter relaxation pathways enabled by graphene", has been published in Nature Physics.

Erbium ions are essentially used for optical amplifiers and emit light at a wavelength of 1.5 micrometers, the so called third telecom window. This is an important window for optical telecommunications because there is very little energy loss in this range, and thus highly efficient information transmission.

The study has shown that the energy flow from erbium into photons or plasmons can be controlled simply by applying a small electrical voltage. The plasmons in graphene are rather unique, as they are very strongly confined, with a plasmon wavelength that is two orders of magnitude smaller than the wavelength of the emitted photons. As the Fermi energy of the graphene sheet was gradually increased, the erbium emitters went from exciting electrons in the graphene sheet, to emitting photons or plasmons. The experiments revealed the long-sought-after graphene plasmons at near-infrared frequencies, relevant for these telecommunications applications. In addition, the strong concentration of optical energy offers new possibilities for data storage and manipulation through active plasmonic networks.

Frank Koppens commented: "This work shows that electrical control of light at the nanometer scale is possible and efficient, thanks to the optoelectronics properties of graphene."

###

Funding Information

This work was funded by the E.C. under Graphene Flagship, as well as the NWO Rubicon fellowship, The Fundacio Cellex Barcelona, the ERC and the MIT MISTI-Spain program.

####

About ICFO-The Institute of Photonic Sciences
ICFO-The Institute of Photonic Sciences was created in 2002 by the government of Catalonia and the Technical University of Catalonia as a centre of research excellence devoted to the science and technologies of light with a triple mission: to conduct frontier research, train the next generation of scientists, and provide knowledge and technology transfer. Today, it is one of the top research centres worldwide in its category as measured by international rankings.

Research at ICFO targets the forefront of science and technology based on light with programs directed at applications in Health, Renewable Energies, Information Technologies, Security and Industrial processes, among others. The institute hosts 300 professionals based in a dedicated building situated in the Mediterranean Technology Park in the metropolitan area of Barcelona.

ICFO participates in a large number of projects and international networks of excellence and is host to the NEST program which is financed by Fundación Privada Cellex Barcelona. Ground-breaking research in graphene is being carried out at ICFO and through key collaborative research partnerships such as the FET Graphene Flagship. Prof Frank Koppens is the co-leader of the Optoelectonics work package within Flagship program.

For more information, please click here

Contacts:
Alina Hirschmann

34-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to paper:

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project