Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Liquids and glasses relax, too. But not like you thought

At the picosecond scale, liquids move not so much in a gang rush as a follow-the-leader process akin to the space moving around in a 15 puzzle, according to a group of NIST researchers. The physical model they propose has implications for the design of protein-based drugs that must be stored for long periods at room temperature.
CREDIT: Baum/NIST
At the picosecond scale, liquids move not so much in a gang rush as a follow-the-leader process akin to the space moving around in a 15 puzzle, according to a group of NIST researchers. The physical model they propose has implications for the design of protein-based drugs that must be stored for long periods at room temperature.

CREDIT: Baum/NIST

Abstract:
A new insight into the fundamental mechanics of the movement of molecules recently published* by researchers at the National Institute of Standards and Technology (NIST) offers a surprising view of what happens when you pour a liquid out of a cup. More important, it provides a theoretical foundation for a molecular-level process that must be controlled to ensure the stability of important protein-based drugs at room temperature.

Liquids and glasses relax, too. But not like you thought

Gaithersburg, MD | Posted on January 15th, 2015

Proteins depend critically on their three-dimensional structure, the shape the long and complex molecules tend to fold into. Modern protein-based drugs--for example, vaccines or antibodies created to fight cancers--generally are not stable at room temperature or in the liquid formulations most convenient for clinical use. To preserve them for use in parts of the world without reliable refrigeration, manufacturers freeze-dry the proteins and coat the complex molecules with glassy sugars to keep their structure intact. "It's like a lollypop," observes NIST biochemist Marcus Cicerone, "but these lollypops are only 10 microns or smaller."

The challenge is to design the sugar coating to get the maximum shelf life for a given pharmaceutical protein, which ideally would be measured in years. The issue revolves around what chemists refer to as "relaxation"--broadly, any molecular motion that leads to transport of the molecule. About 10 years ago, NIST researchers discovered a testing shortcut.** Using neutron radiation, they discovered that measuring tiny molecular movements in the proteins at very short timescales--picoseconds***--could reliably predict the long-term stability of a formulation. The sugars that worked the best were the ones that suppressed the tiny, rapid motions. Exactly why this was so was not particularly clear, but it worked.

This new paper finally explains the underlying principles. The neutron experiments, says Cicerone, measure mean square displacement. "Imagine a jarful of molecules. It's how far the average molecule jiggles around for a given timescale," he says. "In condensed matter like a liquid or glass, we usually think that all the molecules are identical, and on the average they all have the same environment with a little bit of space for them to jiggle, but not very much."

"What we found is that picture is not really right."

In reality, Cicerone says, there are two different environments the molecules can be in. "There is one environment like that--molecules are very well packed and on a picosecond timescale they move maybe one percent of their radius. They're hardly moving at all. But there's another environment where some molecules can move maybe 30 percent of their radius in the same time.They're really making big jumps, and in glasses, those big jumps are essentially the only way that molecules can move around. Everybody else is completely stuck.

"It's kind of like a 15 puzzle. You can only move one at a time."

What happens is a molecule next to a region that's more loosely packed can move there, and does. Then one that was next to it suddenly has room to move, and does, and so on. On a picosecond and nanometer scale of time and space, when you pour a liquid out of a cup, it doesn't really all come out all at once. It's more follow-the-leader.

On a practical level, says Cicerone, the results explain why the short timescale mean displacement measurements can predict the results of molecular degradation measurements that would normally take months. "It gives a really good solid understanding of why these picosecond and nanosecond timescale measurements correlate with degradation processes in glass for the proteins," he says, "so it gives us confidence that the techniques we build that are based on this idea will be robust and people will be able to use them."

As a bonus, he says, the model also explains a somewhat arcane degradation process in glasses called Johari-Goldstein relaxation. "It's the timescale for the switching between the tightly packed and loosely packed regions. It's the vacancy in the game of 15 moving around," says Cicerone.

###

* M.T. Cicerone, Q. Zhong and M. Tyagi. Picosecond dynamic heterogeneity, hopping and Johar-Goldstein relaxation in glass-forming liquids. Physical Review Letters 113,117801-117801 (2014).

** See the 2004 article, "Keeping Drugs Stable Without Refrigeration," at www.nist.gov/mml/msed/drugs_061604.cfm, and the 2008 article, "Candy-Coating Keeps Proteins Sweet," at www.nist.gov/mml/msed/sugar_081908.cfm.

***0.000 000 000 001 second

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cancer

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project