Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Carbon nanotube finding could lead to flexible electronics with longer battery life

Michael Arnold
Michael Arnold

Abstract:
University of Wisconsin-Madison materials engineers have made a significant leap toward creating higher-performance electronics with improved battery life — and the ability to flex and stretch.

Carbon nanotube finding could lead to flexible electronics with longer battery life

Madison, WI | Posted on January 14th, 2015

Led by materials science Associate Professor Michael Arnold and Professor Padma Gopalan, the team has reported the highest-performing carbon nanotube transistors ever demonstrated. In addition to paving the way for improved consumer electronics, this technology could also have specific uses in industrial and military applications.

In a paper published recently in the journal ACS Nano, Arnold, Gopalan and their students reported transistors with an on-off ratio that's 1,000 times better and a conductance that's 100 times better than previous state-of-the-art carbon nanotube transistors.

"Carbon nanotubes are very strong and very flexible, so they could also be used to make flexible displays and electronics that can stretch and bend, allowing you to integrate electronics into new places like clothing," says Arnold. "The advance enables new types of electronics that aren't possible with the more brittle materials manufacturers are currently using."

Carbon nanotubes are single atomic sheets of carbon rolled up into a tube. As some of the best electrical conductors ever discovered, carbon nanotubes have long been recognized as a promising material for next-generation transistors, which are semiconductor devices that can act like an on-off switch for current or amplify current. This forms the foundation of an electronic device.

However, researchers have struggled to isolate purely semiconducting carbon nanotubes, which are crucial, because metallic nanotube impurities act like copper wires and "short" the device. Researchers have also struggled to control the placement and alignment of nanotubes. Until now, these two challenges have limited the development of high-performance carbon nanotube transistors.

Building on more than two decades of carbon nanotube research in the field, the UW-Madison team drew on cutting-edge technologies that use polymers to selectively sort out the semiconducting nanotubes, achieving a solution of ultra-high-purity semiconducting carbon nanotubes.

Previous techniques to align the nanotubes resulted in less-than-desirable packing density, or how close the nanotubes are to one another when they are assembled in a film. However, the UW-Madison researchers pioneered a new technique, called floating evaporative self-assembly, or FESA, which they described earlier in 2014 in the ACS journal Langmuir. In that technique, researchers exploited a self-assembly phenomenon triggered by rapidly evaporating a carbon nanotube solution.

The team's most recent advance also brings the field closer to realizing carbon nanotube transistors as a feasible replacement for silicon transistors in computer chips and in high-frequency communication devices, which are rapidly approaching their physical scaling and performance limits.

"This is not an incremental improvement in performance," Arnold says. "With these results, we've really made a leap in carbon nanotube transistors. Our carbon nanotube transistors are an order of magnitude better in conductance than the best thin film transistor technologies currently being used commercially while still switching on and off like a transistor is supposed to function."

The researchers have patented their technology through the Wisconsin Alumni Research Foundation and have begun working with companies to accelerate the technology transfer to industry.

The work was funded by a grant from the National Science Foundation, as well as grants from the UW-Madison Center of Excellence for Materials Research and Innovation, the U.S. Army Research Office, the National Science Foundation Graduate Research Fellowship Program, and the Wisconsin Alumni Research Foundation. Additional authors on the ACS Nano paper include UW-Madison materials science and engineering graduate students Gerald Brady, Yongho Joo and Matthew Shea, and electrical and computer engineering graduate student Meng-Yin Wu.

####

For more information, please click here

Contacts:
Michael S. Arnold
608-262-3863,


Gerald Brady

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project