Home > Press > New approach may lead to inhalable vaccines for influenza, pneumonia: Changing the surface charge of a PRINT nanoparticle may give researchers a way forward to develop vaccines for diseases that target the lungs
![]() |
Abstract:
Researchers at the University of North Carolina at Chapel Hill and North Carolina State University have uncovered a novel approach to creating inhalable vaccines using nanoparticles that shows promise for targeting lung-specific diseases, such as influenza, pneumonia and tuberculosis.
The work, led by Cathy Fromen and Gregory Robbins, members of the DeSimone and Ting labs, reveals that a particle's surface charge plays a key role in eliciting immune responses in the lung. Using the Particle Replication in Nonwetting Templates (PRINT) technology invented in the DeSimone lab, Fromen and Robbins were able to specifically modify the surface charge of protein-loaded particles while avoiding disruption of other particle features, demonstrating PRINT's unique ability to modify particle attributes independently from one another.
When delivered through the lung, particles with a positive surface charge were shown to induce antibody responses both locally in the lung and systemically in the body. In contrast, negatively charged particles of the same composition led to weaker, and in some cases undetectable, immune responses, suggesting that particle charge is an important consideration for pulmonary vaccination.
The findings, published in the Proceedings of the National Academy of Sciences, also have broad public health implications for improving the accessibility of vaccines. An inhalable vaccine may eliminate the need for refrigeration, which can not only improve shelf life, but also enable distribution of vaccines to low-resource areas, including many developing countries where there is significant need for better access to vaccines.
###
Joseph DeSimone is Chancellor's Eminent Professor of Chemistry at UNC and William R. Kenan, Jr. Distinguished Professor of Chemical Engineering at NC State and of Chemistry at UNC. Jenny Ting is William Rand Kenan Professor of Microbiology and Immunology in UNC's School of Medicine; she also directs UNC's Center for Translational Immunology, co-directs the UNC Inflammatory Diseases Institute and is the immunology program leader at the Lineberger Comprehensive Cancer Center.
This work is supported by the National Institute of Allergy and Infectious Diseases-funded Center for Translational Research as well as the Defense Threat Reduction Agency.
####
For more information, please click here
Contacts:
Thania Benios
919-962-8596
Copyright © The University of North Carolina at Chapel Hill
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |