Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image

A picture of a membrane protein called cysZ determined with Phenix software using data that could not previously be analyzed. Image Los Alamos National Laboratory
A picture of a membrane protein called cysZ determined with Phenix software using data that could not previously be analyzed.

Image Los Alamos National Laboratory

Abstract:
Scientists are making it easier for pharmaceutical companies and researchers to see the detailed inner workings of molecular machines.

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image

Los Alamos, NM | Posted on December 22nd, 2014

"Inside each cell in our bodies and inside every bacterium and virus are tiny but complex protein molecules that synthesize chemicals, replicate genetic material, turn each other on and off, and transport chemicals across cell membranes," said Tom Terwilliger, a Los Alamos National Laboratory scientist.

"Understanding how all these machines work is the key to developing new therapeutics, for treating genetic disorders, and for developing new ways to make useful materials."

To understand how a machine works you have to be able to see how it is put together and how all its parts fit together. This is where the Los Alamos scientists come in. These molecular machines are very small: a million of them placed side by side would take up less than an inch of space. Researchers can see them however, using x-rays, crystals and computers. Researchers produce billions of copies of a protein machine, dissolve them in water, and grow crystals of the protein, like growing sugar crystals except that the machines are larger than a sugar molecule.

Then they shine a beam of X-rays at a crystal and measure the brightness of each of the thousands of diffracted X-ray spots that are produced. Then researchers use the powerful Phenix software, developed by scientists at Los Alamos, Lawrence Berkeley National Laboratory, Duke and Cambridge universities, to analyze the diffraction spots and produce a three-dimensional picture of a single protein machine. This picture tells the researchers exactly how the protein machine is put together.

The 3-D Advance

Recently Los Alamos scientists worked with their colleagues at LBNL and Cambridge University to make it even easier to visualize a molecular machine. In a report in the journal Nature Methods this month, Los Alamos scientists and their team show that they can obtain three-dimensional pictures of molecular machines using X-ray diffraction spots that could not previously be analyzed.

Some molecular machines contain a few metal atoms or other atoms that diffract X-rays differently than the carbon, oxygen, nitrogen, and hydrogen atoms that make up most of the atoms in a protein. The Phenix software finds those metal atoms first, and then uses their locations to find all the other atoms. For most molecular machines, however, metal atoms have to be incorporated into the machine artificially to make this all work.

The major new development to which Los Alamos scientists have contributed was showing that powerful statistical methods could be applied to find metal atoms even if they do not scatter X-rays very differently than all the other atoms. Even metal atoms such as sulfur that are naturally part of almost all proteins can be found and used to generate a three-dimensional picture of a protein. Now that it will often be possible to see a three-dimensional picture of a protein without artificially incorporating metal atoms into them, many more molecular machines can be studied.

Cracking the Cascade

Molecular machines that have recently been seen in three-dimensional detail include a "huge" molecular machine called Cascade that was reported in the journal Science this summer. The Cascade machine is present in bacteria and can recognize DNA that comes from viruses that infect the bacteria. The Cascade machine is made up of 11 proteins and an RNA molecule and looks like a seahorse, with the RNA molecule winding through the whole "body" of the seahorse. If a foreign piece of DNA in the bacterial cell is complementary to part of the RNA molecule then another specialized machine can come by and chop up the foreign DNA, saving the bacterium from infection.

Los Alamos and Cambridge University scientists who were developing the Phenix software were part of the team that visualized this protein machine for the first time. The Phenix software has been used to determine the three-dimensional shapes of over 15,000 different protein machines and has been cited by over 5000 scientific publications.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

About Phenix

(www.phenix-online.org) Phenix is a collaborative team developing new software for determining the shapes of molecular machines using X-ray crystallography. Phenix includes researchers from Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Duke University, and Cambridge University. Phenix is supported by the National Institutes of Health and by the Phenix Industrial Consortium.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to paper in Nature Methods:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project