Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A sponge-like molecular cage for purification of fullerenes

Abstract:
A work in Nature Communications presents a supramolecular nanocage which encapsulates fullerenes of different sizes and allows the extraction of pure C60 and C70 through a washing-based strategy. The work was coordinated from the Universitat de Girona and participated by Ramón y Cajal Researcher Dr. Inhar Imaz and ICREA Research Prof. Daniel Maspoch from the ICN2 Supramolecular NanoChemistry & Materials Group..

A sponge-like molecular cage for purification of fullerenes

Barcelona, Spain | Posted on December 15th, 2014

A fullerene is a molecule made of carbon that can be found in many shapes, such as spheres or tubes. They have a wide range of applications, highlighting their extensive use as electroactive materials in solar cells and with continuously appearing new uses in medicine. Any application, however, is limited in origin by tedious solid-liquid extractions (usually in toluene) and time-expensive chromatographic separations. Even the extraction of small amounts of purified fullerenes for research purposes becomes a complex process.

A work in Nature Communications recently presented a supramolecular nanocage synthesized by metal-directed self-assembly, which encapsulates fullerenes of different sizes. The study was led from the Universitat de Girona and participated by the UAB Department of Chemistry, the ALBA Synchrotron and the ICN2 Supramolecular NanoChemistry & Materials Group, from which RyC Researcher Dr. Inhar Imaz and ICREA Research Prof. Daniel Maspoch are among the authors.

The article provides direct experimental evidence for the 1:1 encapsulation of C60, C70, C76, C78 and C84, fullerene molecules consisting of 60, 70, 76, 78 and 84 carbon atoms respectively. Solid state structures for the caged fullerenes with C60 and C70 have been obtained using X-ray synchrotron radiation. With a washing-based strategy it is possible to exclusively extract pure C60 from a solid sample of cage charged with a mixture of fullerenes.

This tetragonal prismatic supramolecular cage with a high affinity for the inclusion of fullerenes, and a facile ability to release them by solvent washing of the solid inclusion compound, is an attractive methodology to selectively extract C60 and, with a lower efficiency, C70 from fullerene mixtures. Although the method cannot be used to produce big amounts of purified fullerenes, it provides an experimental platform to design tuned cages for selective extraction of higher fullerenes. The solid-phase fullerene encapsulation and liberation represent a twist in host-guest chemistry for molecular nanocage structures.

####

For more information, please click here

Contacts:
Alicia Labian

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project