Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Polymeric Drug Carrier Produced in Iran for Target Delivery System

Abstract:
In this research, biodegradable polymers have been used in the production of nanocarrier, which enable the release of drug by controlling changes in temperature. The production and characterization of the nanocarrier is at the laboratorial stage at the moment.

Polymeric Drug Carrier Produced in Iran for Target Delivery System

Tehran, Iran | Posted on December 9th, 2014

Modified hydrophobic polysaccharides have recently attracted the attention of many researchers. These materials are important due to their biocompatibility, biodegradability, temperature responsiveness, ability to form nanoparticles and encapsulation of hydrophobic drugs. In this project, the researchers tried to produce and characterize a target delivery system by using anticancer nanocarrier made of these materials.

According to Dr. Ma'soumeh Baqeri, one of the researchers, hydroxypropyl cellulose (HPC) was chosen in this research as a natural, biocompatible and biodegradable polymer, and the new bi-polymer was produced based on it. To this end, the connection of cholesterol and polyethylene glycol to HPC was used. After the final modification by connection of biotin to the nanocarrier, it was used to carry paclitaxel anticancer drug to cancerous cells in a target delivery manner.

Toxicity study of the produced missiles showed that the carrier is not toxic for natural cells. Results obtained from cellular sorption showed that the presence of biotin decreases the amount of living cancerous cells due to the increase in taking of drug carrier by cancerous cells.

Results of the research have been published in Journal of Polymer Research, vol. 21, issue 567, 2014, pp. 1-15.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project