Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to make mobile batteries last longer by controlling energy flows at nano-level

Abstract:
Electronic devices waste a lot of energy by producing useless heat. This is one of the main reasons our mobiles use up battery power so quickly. Researchers at University of Luxembourg have made a leap forward in understanding how this happens and how this waste could be reduced by controlling energy flows at a molecular level. This would make our technology cheaper to run and more durable.

How to make mobile batteries last longer by controlling energy flows at nano-level

Luxembourg | Posted on November 6th, 2014

Until now, scientists had just an average view of energy conversion efficiency in nano-devices. For the first time, a more complete picture has been described thanks to University of Luxembourg research. "We discovered universal properties about the way energy efficiency of nano-systems fluctuates," explained Prof. Massimiliano Esposito of Luxembourg University's Physics and Materials research unit. Using this knowledge it will be possible to control energy flows more accurately, so cutting waste.

These energy controls could be achieved by a technological regulator which would prevent the natural process whereby heat generated in one part of a device is lost as it spreads to cooler areas. In other words, this adds interesting nuances to the Second Law of Thermodynamics, one of the fundamental theories in physics. This theoretical understanding of how to regulate of energy flows brings to life "Maxwell's demon", a notion introduced by the major 19th Century mathematician and physicist James Clerk Maxwell. He imagined that this "demon" could overturn the laws of nature by allowing cold particles to flow towards hot areas.

Two recent papers published in highly respected scientific journals (Physical Review X and Nature Communications) describe these findings. The research team under Prof. Esposito used mathematical models to arrive at these conclusions. These ideas will be put into practice in the laboratory before any eventual practical technological applications are developed.

####

About Université du Luxembourg
The University of Luxembourg, founded in 2003, is multilingual, international and strongly focused on research. Its students and staff have chosen a modern institution with a personal atmosphere, close to the European institutions, international companies and the financial place Luxembourg. Teaching, research and knowledge transfer at the highest international level are the goals that this university set from the start. With 180 professors, associate professors and senior lecturers from 20 countries, 5000 students from 95 countries, as well as partnerships in Europe and overseas, the University offers a multicultural environment.

For more information, please click here

Contacts:
Sophie Kolb

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full scientific articles “Thermodynamics with continuous information flow” as published in “Physical Review X” (DOI: 10.1103/PhysRevX.4.031015) and “The unlikely Carnot efficiency” as published in “Nature Communications” (DOI: 10.1038/ncomms5721) can be viewed here:

and here:

Jordan M. Horowitz, Massimiliano Esposito. "Thermodynamics with Continuous Information Flow". Physical Review X, Volume 4, Page 031015, 28-Jul-2014. DOI: 10.1103/PhysRevX.4.031015

Gatien Verley, Massimiliano Esposito, Tim Willaert & Christian Van den Broeck. “The unlikely Carnot efficiency”. Nature Communications 5, Article number: 4721, 16-Jul-2014. DOI: 10.1038/ncomms5721

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project