Home > Press > How to make mobile batteries last longer by controlling energy flows at nano-level
![]() |
Abstract:
Electronic devices waste a lot of energy by producing useless heat. This is one of the main reasons our mobiles use up battery power so quickly. Researchers at University of Luxembourg have made a leap forward in understanding how this happens and how this waste could be reduced by controlling energy flows at a molecular level. This would make our technology cheaper to run and more durable.
Until now, scientists had just an average view of energy conversion efficiency in nano-devices. For the first time, a more complete picture has been described thanks to University of Luxembourg research. "We discovered universal properties about the way energy efficiency of nano-systems fluctuates," explained Prof. Massimiliano Esposito of Luxembourg University's Physics and Materials research unit. Using this knowledge it will be possible to control energy flows more accurately, so cutting waste.
These energy controls could be achieved by a technological regulator which would prevent the natural process whereby heat generated in one part of a device is lost as it spreads to cooler areas. In other words, this adds interesting nuances to the Second Law of Thermodynamics, one of the fundamental theories in physics. This theoretical understanding of how to regulate of energy flows brings to life "Maxwell's demon", a notion introduced by the major 19th Century mathematician and physicist James Clerk Maxwell. He imagined that this "demon" could overturn the laws of nature by allowing cold particles to flow towards hot areas.
Two recent papers published in highly respected scientific journals (Physical Review X and Nature Communications) describe these findings. The research team under Prof. Esposito used mathematical models to arrive at these conclusions. These ideas will be put into practice in the laboratory before any eventual practical technological applications are developed.
####
About Université du Luxembourg
The University of Luxembourg, founded in 2003, is multilingual, international and strongly focused on research. Its students and staff have chosen a modern institution with a personal atmosphere, close to the European institutions, international companies and the financial place Luxembourg. Teaching, research and knowledge transfer at the highest international level are the goals that this university set from the start. With 180 professors, associate professors and senior lecturers from 20 countries, 5000 students from 95 countries, as well as partnerships in Europe and overseas, the University offers a multicultural environment.
For more information, please click here
Contacts:
Sophie Kolb
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |