Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to make mobile batteries last longer by controlling energy flows at nano-level

Abstract:
Electronic devices waste a lot of energy by producing useless heat. This is one of the main reasons our mobiles use up battery power so quickly. Researchers at University of Luxembourg have made a leap forward in understanding how this happens and how this waste could be reduced by controlling energy flows at a molecular level. This would make our technology cheaper to run and more durable.

How to make mobile batteries last longer by controlling energy flows at nano-level

Luxembourg | Posted on November 6th, 2014

Until now, scientists had just an average view of energy conversion efficiency in nano-devices. For the first time, a more complete picture has been described thanks to University of Luxembourg research. "We discovered universal properties about the way energy efficiency of nano-systems fluctuates," explained Prof. Massimiliano Esposito of Luxembourg University's Physics and Materials research unit. Using this knowledge it will be possible to control energy flows more accurately, so cutting waste.

These energy controls could be achieved by a technological regulator which would prevent the natural process whereby heat generated in one part of a device is lost as it spreads to cooler areas. In other words, this adds interesting nuances to the Second Law of Thermodynamics, one of the fundamental theories in physics. This theoretical understanding of how to regulate of energy flows brings to life "Maxwell's demon", a notion introduced by the major 19th Century mathematician and physicist James Clerk Maxwell. He imagined that this "demon" could overturn the laws of nature by allowing cold particles to flow towards hot areas.

Two recent papers published in highly respected scientific journals (Physical Review X and Nature Communications) describe these findings. The research team under Prof. Esposito used mathematical models to arrive at these conclusions. These ideas will be put into practice in the laboratory before any eventual practical technological applications are developed.

####

About Université du Luxembourg
The University of Luxembourg, founded in 2003, is multilingual, international and strongly focused on research. Its students and staff have chosen a modern institution with a personal atmosphere, close to the European institutions, international companies and the financial place Luxembourg. Teaching, research and knowledge transfer at the highest international level are the goals that this university set from the start. With 180 professors, associate professors and senior lecturers from 20 countries, 5000 students from 95 countries, as well as partnerships in Europe and overseas, the University offers a multicultural environment.

For more information, please click here

Contacts:
Sophie Kolb

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full scientific articles “Thermodynamics with continuous information flow” as published in “Physical Review X” (DOI: 10.1103/PhysRevX.4.031015) and “The unlikely Carnot efficiency” as published in “Nature Communications” (DOI: 10.1038/ncomms5721) can be viewed here:

and here:

Jordan M. Horowitz, Massimiliano Esposito. "Thermodynamics with Continuous Information Flow". Physical Review X, Volume 4, Page 031015, 28-Jul-2014. DOI: 10.1103/PhysRevX.4.031015

Gatien Verley, Massimiliano Esposito, Tim Willaert & Christian Van den Broeck. “The unlikely Carnot efficiency”. Nature Communications 5, Article number: 4721, 16-Jul-2014. DOI: 10.1038/ncomms5721

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project