Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice chemists gain edge in next-gen energy: Rice University scientists create dual-purpose film for energy storage, hydrogen catalysis

A new material developed at Rice University based on molybdenum disulfide exposes as much of the edge as possible, making it efficient as both a catalyst for hydrogen production and for energy storage.Credit: Tour Group/Rice University
A new material developed at Rice University based on molybdenum disulfide exposes as much of the edge as possible, making it efficient as both a catalyst for hydrogen production and for energy storage.

Credit: Tour Group/Rice University

Abstract:
Rice University scientists who want to gain an edge in energy production and storage report they have found it in molybdenum disulfide.

Rice chemists gain edge in next-gen energy: Rice University scientists create dual-purpose film for energy storage, hydrogen catalysis

Houston, TX | Posted on November 4th, 2014

The Rice lab of chemist James Tour has turned molybdenum disulfide's two-dimensional form into a nanoporous film that can catalyze the production of hydrogen or be used for energy storage.

The versatile chemical compound classified as a dichalcogenide is inert along its flat sides, but previous studies determined the material's edges are highly efficient catalysts for hydrogen evolution reaction (HER), a process used in fuel cells to pull hydrogen from water.

Tour and his colleagues have found a cost-effective way to create flexible films of the material that maximize the amount of exposed edge and have potential for a variety of energy-oriented applications.

The Rice research appears in the journal Advanced Materials.

Molybdenum disulfide isn't quite as flat as graphene, the atom-thick form of pure carbon, because it contains both molybdenum and sulfur atoms. When viewed from above, it looks like graphene, with rows of ordered hexagons. But seen from the side, three distinct layers are revealed, with sulfur atoms in their own planes above and below the molybdenum.

This crystal structure creates a more robust edge, and the more edge, the better for catalytic reactions or storage, Tour said.

"So much of chemistry occurs at the edges of materials," he said. "A two-dimensional material is like a sheet of paper: a large plain with very little edge. But our material is highly porous. What we see in the images are short, 5- to 6-nanometer planes and a lot of edge, as though the material had bore holes drilled all the way through."

The new film was created by Tour and lead authors Yang Yang, a postdoctoral researcher; Huilong Fei, a graduate student; and their colleagues. It catalyzes the separation of hydrogen from water when exposed to a current. "Its performance as a HER generator is as good as any molybdenum disulfide structure that has ever been seen, and it's really easy to make," Tour said.

While other researchers have proposed arrays of molybdenum disulfide sheets standing on edge, the Rice group took a different approach. First, they grew a porous molybdenum oxide film onto a molybdenum substrate through room-temperature anodization, an electrochemical process with many uses but traditionally employed to thicken natural oxide layers on metals.

The film was then exposed to sulfur vapor at 300 degrees Celsius (572 degrees Fahrenheit) for one hour. This converted the material to molybdenum disulfide without damage to its nano-porous sponge-like structure, they reported.

The films can also serve as supercapacitors, which store energy quickly as static charge and release it in a burst. Though they don't store as much energy as an electrochemical battery, they have long lifespans and are in wide use because they can deliver far more power than a battery. The Rice lab built supercapacitors with the films; in tests, they retained 90 percent of their capacity after 10,000 charge-discharge cycles and 83 percent after 20,000 cycles.

"We see anodization as a route to materials for multiple platforms in the next generation of alternative energy devices," Tour said. "These could be fuel cells, supercapacitors and batteries. And we've demonstrated two of those three are possible with this new material."

Co-authors of the paper are Rice graduate students Gedeng Ruan and Changsheng Xiang. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of materials science and nanoengineering and of computer science.

The Peter M. and Ruth L. Nicholas Postdoctoral Fellowship of Rice's Smalley Institute for Nanoscale Science and Technology and the Air Force Office of Scientific Research Multidisciplinary University Research program supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice’s undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews - See more at: http://news.rice.edu/2014/11/03/rice-chemists-gain-edge-in-next-gen-energy-2/#sthash.GWfyyIZL.dpuf

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Tour Group:

Rice Department of Materials Science and NanoEngineering:

Richard E. Smalley Institute for Nanoscale Science and Technology:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project