Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles

Abstract:
Scientists at the U.S. Department of Energy's Ames Laboratory have developed deeper understanding of the ideal design for mesoporous nanoparticles used in catalytic reactions, such as hydrocarbon conversion to biofuels. The research will help determine the optimal diameter of channels within the nanoparticles to maximize catalytic output.

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles

Ames, IA | Posted on October 21st, 2014

Porous nanoparticles are lab-created tiny spheres that incorporate even tinier parallel channels or pores. In catalytic processes, each channel within a particle is lined with catalytic sites that convert a reactant to a product. What's appealing about porous nanoparticles is that the walls of the pores provide significant surface area to support catalytic sites within a super-small sphere. And, as one might expect, the more pores, the more surface area, the better the catalytic reaction.

"Downside is that when the catalytic sites are within narrow pores, as is the case with mesoporous nanoparticles, the entire reaction, including the movement of reactants and products has to happen within the narrow channel," said Jim Evans, a scientist at Ames Laboratory who led the research. "Just like anyone who has found themselves trying to move around a crowded grocery store aisle, it's not always so easy to move past others in a very narrow space."

So, the optimal design for mesoporous nanoparticles hinges on the diameter of the individual channels: narrow enough to fit as many pores in each particle as possible to maximize the number of catalytic sites -- but wide enough for catalytic products and reactants to easily squeeze by each other and efficiently complete the reaction. To determine this "sweet spot" for channel diameter, scientists must better understand how molecules move past each other within the channel.

"In particular, it is helpful to know how often a nearby pair of reactant and product molecules pass by each other versus how often they separate from one another. Determining this ‘passing probability' for different pore diameters and various relevant molecular shapes helps determine just how narrow channels can be before the catalytic output is reduced," said Evans.

Evans and his collaborators ran millions of simulations trials for pairs of sphere-shaped molecules and pairs of more irregularly-shaped molecules. These enabled precise determination of passing probability behavior for narrow pores.

"However, simulation becomes demanding and results less reliable for realistic irregular-shaped molecules with many rotational degrees of freedom. Also, just running simulations does not necessarily provide a deep understanding as to what features control behavior," said Evans.

So, he brought together expertise at Ames Laboratory in both theoretical chemistry and applied mathematics to determine and implement the best theoretical and modeling tools to get more reliable results and deeper insights into how the passing probability falls to zero as the channel size narrows.

"It was the integrated combination of intensive simulations and novel analytic theory that together provided a substantial advance in our understanding of these important molecular passing processes. With this kind of insight, in principle, porous nanoparticle systems can be optimized," said Evans.

This research is supported by the U.S. Department of Energy Office of Science.

####

About DOE/Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Breehan Gerleman Lucchesi

515-294-9750

Jim Evans
Chemical and Biological Sciences
515-294-1638

Copyright © DOE/Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Results were reported in Physical Review Letters:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project