Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Microrobots armed with new force-sensing system to probe cells

This is a side view of the microrobot next to a U.S. penny.Purdue University photo
This is a side view of the microrobot next to a U.S. penny.

Purdue University photo

Abstract:
Incorporating In-situ Force Sensing Capabilities in a Magnetic Microrobot

Wuming Jing and David J. Cappelleri

Purdue University

This paper presents the preliminary design of a microforce sensing mobile microrobot. The design consists of a planar, vision-based micro force sensor end-effector, while the microrobot body is made from a nickel magnetic layer driven by an exterior magnetic field. With a known stiffness, the manipulation forces can be determined from observing the deformation of the end-effector through a CCD camera attached to an optical microscope. After analyzing and calibrating the stiffness of a micromachined prototype, manipulation tests are conducted to verify this microrobot prototype is indeed capable of in situ force sensing while performing a manipulation task. This concept can be scaled down further for next generation designs targeting real biomedical applications on microscale.

Microrobots armed with new force-sensing system to probe cells

West Lafayette, IN | Posted on October 13th, 2014

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe.

Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots. Measuring these microforces is essential to precisely control the bots and to use them to study cells.

"What is needed is a useful tool biologists can use every day and at low cost," said David Cappelleri, an assistant professor of mechanical engineering at Purdue University.

Now researchers have designed and built a "vision-based micro force sensor end-effector," which is attached to the microrobots like a tiny proboscis. A camera is used to measure the probe's displacement while it pushes against cells, allowing a simple calculation that reveals the force applied.

The approach could make it possible to easily measure the "micronewtons" of force applied at the cellular level. Such a tool is needed to better study cells and to understand how they interact with microforces. The forces can be used to transform cells into specific cell lines, including stem cells for research and medical applications. The measurement of microforces also can be used to study how cells respond to certain medications and to diagnose disease.

"You want a device that is low-cost, that can measure micronewton-level forces and that can be easily integrated into standard experimental test beds," Cappelleri said.

Microrobots used in research are controlled with magnetic fields to guide them into position.

"But this is the first one with a truly functional end effector to measure microforces," he said.

Current methods for measuring the forces applied by microrobots are impractical and expensive, requiring an atomic force microscope or cumbersome sensors with complex designs that are difficult to manufacture. The new system records the probe's displacement with a camera as it pushes against a cell or tissue. Researchers already know the stiffness of the probe. When combined with displacement, a simple calculation reveals the force applied.

Findings were detailed in a research paper presented during the International Conference on Intelligent Robots and Systems in September. The paper was authored by postdoctoral research associate Wuming Jing and Cappelleri.

The new system combined with the microrobot is about 700 microns square, and the researchers are working to create versions about 500 microns square. To put this scale into perspective, the mini-machine is about one-half the size of the "E" in "One Cent" on a U.S. penny.

"We are currently working on scaling it down," he said.

Future research also may focus on automating the microrobots.

The system was fabricated at the Birck Nanotechnology Center in Purdue's Discovery Park. The research has been supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source:
David J. Cappelleri
765-494-3719

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project