Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld

Abstract:
'Nano-machines of the future will need tiny devices to reduce friction and make movement possible. The C60 molecule, also known as fullerene or buckyball, seemed to many an excellent candidate for nano-bearings. Unfortunately, the results so far have been conflicting, calling for further studies, like the one carried out by a theoretical team involving the International School for Advanced Studies, the International Center for Theoretical Physics, the National Research Council and the Swiss Federal Laboratories for Materials Science and Technology. Through a series of computer simulations the scientists uncovered the reason for the experimental discrepancies.

Nano-bearings on the test bench: Fullerene spheres can be used to slide in the nanoworld

Trieste, Italy | Posted on October 3rd, 2014

About 3500 years ago, man invented the wheel to make life easier. Then, thanks to Leonardo Da Vinci's genius, the wheel was made smaller to obtain ball bearings. And today? "Today we are trying to get even smaller: scientists are thinking about nano-bearings", comments Andrea Vanossi, of the CNR - Democritos and the International School for Advanced Studies (SISSA) of Trieste, among the authors of a study that has just been published in Nanoscale. "In the future we'll have many nano-machines capable of carrying out the most diverse tasks, for example transporting medicines inside the human body. In order to save energy, many of these vehicles will have to able to move efficiently, using as little energy as possible, and "nano"-sized ball bearings may help achieve this goal".

"Scientists thought they could use C60, a hollow carbon nanosphere, measuring one nanometre in diameter", explains Erio Tosatti, SISSA professor and another author of the study", but there's a problem: the experimental results are at complete variance with each other". C60 has a temperature (260° Kelvin) at which the molecules suddenly become free to rotate, which hopefully has a role in friction. The two most important experiments carried out to date, however, have yielded conflicting results: above this temperature, when the material was made to slide over a substrate, in one case there was no significant decrease in friction, whereas in the other the decrease was dramatic, a good 100%. "What's going on? If we assume that the measurements are correct and the experiments performed correctly (and we have no reason to believe otherwise) how do we explain this difference?", wonders Vanossi. "For this reason, we decided to verify".

The team (a collaboration between SISSA, the International Centre for Theoretical Physics "Abdus Salam" ICTP of Trieste, the Italian National Research Council CNR, and the Swiss Federal Laboratories for Materials Science and Technology) conducted a theoretical, simulation-based study.

"We simulated the tiny tip of an electron microscope bearing a C60 flake, which was dragged over a surface also made of C60", explains Vanossi. "We discovered that when the flake was attached in such a way that it couldn't rotate the friction did not decrease, even if we raised the temperature to above 260° K. It's as if the bearings making up the flake interlocked with the substrate, with no nano-bearing effect. However, when the flake was free to rotate there was a dramatic drop in friction and the flake could slide over the surface far more smoothly". But here the drop in friction is not due to the ball bearing effect, but to the change in contact geometry.

The two states therefore reproduce the results of the two experiments. "Our data faithfully reflect the empirical observations", concludes Tosatti. "This of course does not bode well for the future use of fullerite to reduce friction at the nanoscale, in that the nanobearing function is not confirmed, but it does finally shed light on the physics of this problem".

####

For more information, please click here

Contacts:
Federica Sgorbissa

0039-040-378-7644
(+39) 366-3677586

Copyright © International School of Advanced Studies (SISSA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

OriginalpaperinNanoscale:

Related News Press

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets

Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project