Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication

Abstract:
University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major implications for creating faster and more efficient optical devices for computation and communication.

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication

Minneapolis, MN | Posted on September 22nd, 2014

The research paper by University of Minnesota electrical and computer engineering assistant professor Mo Li and his graduate student Huan Li has been published online and will appear in the October issue of Nature Nanotechnology.

Researchers developed a novel nanoscale device that can capture, measure and transport fundamental particles of light, called photons. The tiny device is just .7 micrometers by 50 micrometer (about .00007 by .005 centimeters) and works almost like a seesaw. On each side of the "seesaw benches," researchers etched an array of holes, called photonic crystal cavities. These cavities capture photons that streamed from a nearby source.

Even though the particles of light have no mass, the captured photons were able to play seesaw because they generated optical force. Researchers compared the optical forces generated by the photons captured in the cavities on the two sides of the seesaw by observing how the seesaw moved up and down. In this way, the researchers weighed the photons. Their device is sensitive enough to measure the force generated by a single photon, which corresponds to about one-third of a thousand-trillionth of a pound or one-seventh of a thousand-trillionth of a kilogram.

Professor Li and his research team also used the seesaw to experimentally demonstrate for the first time the mechanical control of transporting light.

"When we filled the cavity on the left side with photons and leave the cavity on the right side empty, the force generated by the photons started to oscillate the seesaw. When the oscillation was strong enough, the photons can spill over along the beam from the filled cavity to the empty cavity during each cycle," Li said. "We call the phenomenon ‘photon shuttling.'"

The stronger the oscillation, the more photons are shuttled to the other side. Currently the team has been able to transport approximately 1,000 photons in a cycle. For comparison, a 10W light bulb emits 1020 photons every second. The team's ultimate goal is to transport only one photon in a cycle so that the quantum physics of light can be revealed and harnessed.

"The ability to mechanically control photon movement as opposed to controlling them with expensive and cumbersome optoelectronic devices could represent a significant advance in technology," said Huan Li, the lead author of the paper.

The research could be used to develop an extremely sensitive micromechanical way to measure acceleration of a car or a runner, or could be used as part of a gyroscope for navigation, Li said.

In the future, the researchers plan to build sophisticated photon shuttles with more traps on either side of the seesaw device that could shuttle photons over greater distances and at faster speeds. They expect that such devices could play a role in developing microelectronic circuits that would use light instead of electrons to carry data, which would make them faster and consume less power than traditional integrated circuits.

The team's research was funded by the Air Force Office of Scientific Research. The device was fabricated in the cleanroom at the Minnesota Nano Center at the University of Minnesota.

####

For more information, please click here

Contacts:
Rhonda Zurn

612-626-7959


Brooke Dillon
University News Service (612) 624-2801

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the full research paper entitled “Optomechanical photon shuttling between photonic cavities,” visit the Nature Nanotechnology website:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Optical computing/Photonic computing

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project