Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown

The special graphene cools down when laser light is shone on it
The special graphene cools down when laser light is shone on it

Abstract:
In an article published in Nano Letters, a multi-national team of scientists including Dr Aravind Vijayaraghavan from Manchester, Professor Ado Jorio from Belo Horizonte in Brazil and Professor Lukas Novotny from Zurich have shown how laser light interacts with a special kind of graphene to cool it down. This would make it possible to make electronic devices of graphene run cooler and faster simply by shining a laser on it.

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown

Manchester, UK | Posted on September 22nd, 2014

In their experiment, the scientists used two stacked sheets of graphene, but with one sheet rotated by 11.3° with respect to the other. Lasers are commonly used to make things hotter, to burn them or even to melt metal. But this so called ‘twisted bi-layer graphene' has very unique properties. At special combinations of twist angle and laser energy, the exact opposite happens.

Dr Vijayaraghavan, who leads the Nano-functional Materials Group, explains "In any material, heat is stored in the vibrations of atoms; in a hot material, atoms are vibrating faster than in a colder material. When a laser of a specific energy (colour) is shone on this twisted graphene, the particles of light in the laser (called photons) will absorb the vibration energy of the atoms, thereby cooling the system down."

Nick Clark, a PhD student in Vijayaraghavan's group, describes how this special graphene is produced. "When we make graphene flakes using sticky tape, some flakes have edges which are straight, giving an indication of the direction the atoms are oriented in. We identify two such flakes, and then line them up so that the straight edges are at a fixed angle. The angle we need to produce depends on the colour of the laser light we will be using."

According to Dr Vijayaraghavan, this new discovery has tremendous technological implications. He adds "As you might have experienced, if a computer chips runs fast, it gets very hot. This will also be true for future computer chips that might be made with graphene. If it is possible to cool down the chip, then it can run faster. Currently, people use air conditioning, cold water or even liquid nitrogen to keep their computers cool. A future graphene computer might be cooled by shining a laser on it."

The paper, Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene by A Jorio, M Kasperczyk, N Clark, E Neu, P Maletinsky, A Vijayaraghavan, and L Novotny appears in Nano Letters (10.1021/nl502412g) on 16/09/2014, and is the result of a collaboration involving researchers from Manchester, Belo Horizonte, Zurich and Basel.

####

For more information, please click here

Contacts:
Daniel Cochlin
Graphene Communications and Marketing Manager
The University of Manchester
0161 275 8382
07917 506158
www.graphene.manchester.ac.uk
www.manchester.ac.uk
Twitter: @UoMGraphene

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project