Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Use Nanotechnology to Improve Mechanical Properties of Ceramics

Abstract:
Researchers from Iran University of Science and Technology in association with researchers from EPFL University in Switzerland and University of Stockholm, Sweden, used nanotechnology to increase fracture toughness of ceramic bodies up to three times.

Scientists Use Nanotechnology to Improve Mechanical Properties of Ceramics

Tehran, Iran | Posted on September 3rd, 2014

The product has very desirable mechanical properties and has applications in advanced industries such as aerospace, electronics, and biomedical engineering.

Despite unique properties of ceramics, their fragility is a big problem for their application in various industries. High tensile strength, high ratio of length to diameter and other known properties of carbon nanotubes have convinced the researchers to use these nanostructures to strengthen the structure of various compounds as a solution to overcome the weakness of ceramics. In this research, efforts have been made to overcome the two main weak points of ceramics (that are fragility and low fracture toughness) by using carbon nanotubes, and in addition, to modify high temperature properties of zirconia bodies.

Ceramics produced through this method have useful multi-functional properties, including appropriate thermal, electrical, and biocompatibility properties. Production of ceramic bodies through the suggested method may be an important step towards solving the problems in ceramic implants and thermal devices used in various industries.

Mechanism of improving fracture toughness in the presence of carbon nanotubes can be defined as bridging of nanotubes on the opening of fracture and preventing the growth of fracture, taking out the nanotube from the background (a parameter in fracture energy consumption) and fracture deviation (increasing the path of fracture and consequently increasing the toughness).

Results of the research have been published in Ceramics International, vol. 40, issue 2, March 2014, pp. 3347-3352.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project