Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Newly-Developed Nanobiosensor Quickly Diagnoses Cancer

Abstract:
Iranian materials engineering researchers from Sharif University of Technology produced a biosensor for the early diagnosis of cancer.

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer

Tehran, Iran | Posted on August 20th, 2014

The sensor has been made of nanostructured materials, and has high sensitivity and stability while it can be produced through a cost-effective method.

One of the most famous genes in cancer researches is TP53 tumor gene. The determination of its mutation is an important parameter in the detection of tumor respond to treatment. Aggressive growth of some types of cancers is caused by the mutation of this gene. Therefore, the detection and investigation of specific sequence of the gene can be very useful to observe the progress of cancer and treatment of the patient. It can be concluded that the production of a very sensitive biosensor and the development of quick DNA detection methods are vital for early diagnosis of cancer. Among the present methods, electrochemical biosensors provide the chance for simple, quick and sensitive detection of DNA sequence (hybridation phenomenon).

The aim of the research was to produce and study an ultra sensitive nanobiosensor for quick detection of DNA sequences related to the mutation of cancer genes, including TP53, for early diagnosis and treatment of cancers in humans. TP53 cancer gene has been introduced as one of the most famous genes in cancer researches.

Simple production method, low cost, quick response, high sensitivity and wide linear detection range are among the characteristics of the produced nanobiosensor. The sensor also has appropriate stability (14 days) and selectivity, and it has the ability to be reproduced.

A part of the research has been recently published in Alaytica Chimica Acta, vol. 836, issue 1, August 2014, pp. 34-44.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project