Home > Press > Newly-Developed Nanobiosensor Quickly Diagnoses Cancer
Abstract:
Iranian materials engineering researchers from Sharif University of Technology produced a biosensor for the early diagnosis of cancer.
The sensor has been made of nanostructured materials, and has high sensitivity and stability while it can be produced through a cost-effective method.
One of the most famous genes in cancer researches is TP53 tumor gene. The determination of its mutation is an important parameter in the detection of tumor respond to treatment. Aggressive growth of some types of cancers is caused by the mutation of this gene. Therefore, the detection and investigation of specific sequence of the gene can be very useful to observe the progress of cancer and treatment of the patient. It can be concluded that the production of a very sensitive biosensor and the development of quick DNA detection methods are vital for early diagnosis of cancer. Among the present methods, electrochemical biosensors provide the chance for simple, quick and sensitive detection of DNA sequence (hybridation phenomenon).
The aim of the research was to produce and study an ultra sensitive nanobiosensor for quick detection of DNA sequences related to the mutation of cancer genes, including TP53, for early diagnosis and treatment of cancers in humans. TP53 cancer gene has been introduced as one of the most famous genes in cancer researches.
Simple production method, low cost, quick response, high sensitivity and wide linear detection range are among the characteristics of the produced nanobiosensor. The sensor also has appropriate stability (14 days) and selectivity, and it has the ability to be reproduced.
A part of the research has been recently published in Alaytica Chimica Acta, vol. 836, issue 1, August 2014, pp. 34-44.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |