Home > Press > New test reveals purity of graphene: Rice, Osaka scientists use terahertz waves to spot contaminants
Rice and Osaka researchers have come up with a simple method to find contaminants on atom-thick graphene. By putting graphene on a layer of indium phosphide, which emits terahertz waves when excited by a laser pulse, they can measure and map changes in its electrical conductivity. Credit: Rice and Osaka universities |
Abstract:
Graphene may be tough, but those who handle it had better be tender. The environment surrounding the atom-thick carbon material can influence its electronic performance, according to researchers at Rice and Osaka universities who have come up with a simple way to spot contaminants.
Because it's so easy to accidently introduce impurities into graphene, labs led by physicists Junichiro Kono of Rice and Masayoshi Tonouchi of Osaka's Institute of Laser Engineering discovered a way to detect and identify out-of-place molecules on its surface through terahertz spectroscopy.
They expect the finding to be important to manufacturers considering the use of graphene in electronic devices.
The research was published this week by Nature's open-access online journal Scientific Reports. It was made possible by the Rice-based NanoJapan program, through which American undergraduates conduct summer research internships in Japanese labs.
Even a single molecule of a foreign substance can contaminate graphene enough to affect its electrical and optical properties, Kono said. Unfortunately (and perhaps ironically), that includes electrical contacts.
"Traditionally, in order to measure conductivity in a material, one has to attach contacts and then do electrical measurements," said Kono, whose lab specializes in terahertz research. "But our method is contact-less."
That's possible because the compound indium phosphide emits terahertz waves when excited. The researchers used it as a substrate for graphene. Hitting the combined material with femtosecond pulses from a near-infrared laser prompted the indium phosphide to emit terahertz back through the graphene. Imperfections as small as a stray oxygen molecule on the graphene were picked up by a spectrometer.
"The change in the terahertz signal due to adsorption of molecules is remarkable," Kono said. "Not just the intensity but also the waveform of emitted terahertz radiation totally and dynamically changes in response to molecular adsorption and desorption. The next step is to explore the ultimate sensitivity of this unique technique for gas sensing."
The technique can measure both the locations of contaminating molecules and changes over time. "The laser gradually removes oxygen molecules from the graphene, changing its density, and we can see that," Kono said.
The experiment involved growing pristine graphene via chemical vapor deposition and transferring it to an indium phosphide substrate. Laser pulses generated coherent bursts of terahertz radiation through a built-in surface electric field of the indium phosphide substrate that changed due to charge transfer between the graphene and the contaminating molecules. The terahertz wave, when visualized, reflected the change.
The experimental results are a warning for electronics manufacturers. "For any future device designs using graphene, we have to take into account the influence of the surroundings," said Kono. Graphene in a vacuum or sandwiched between noncontaminating layers would probably be stable, but exposure to air would contaminate it, he said.
The Rice and Osaka labs are continuing to collaborate on a project to measure the terahertz conductivity of graphene on various substrates, he said.
The paper's authors include Rice alumna Mika Tabata, who conducted research as a 2012 NanoJapan participant in the Tonouchi lab, and graduate student Minjie Wang; associate professors Iwao Kawayama and Hironaru Murakami and graduate students Yuki Sano and Khandoker Abu Salek of Osaka; and Robert Vajtai, a senior faculty fellow, and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering, professor of materials science and nanoengineering and of chemistry, and chair of the Department of Materials Science and NanoEngineering, both at Rice.
The National Science Foundation (NSF); the Japan Society for the Promotion of Science; the Ministry of Education, Culture, Sports, Science and Technology-Japan and the Murata Science Foundation supported the research. NanoJapan is funded by the NSF's Partnerships for International Research and Education program.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||