Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor

Credits: www.audio-luci-store.it
Credits: www.audio-luci-store.it

Abstract:
A study just published in Nature Communications and carried out by a collaboration of several Italian and international centres, including SISSA, used a technique based on applying short flashes of light to observe and analyse the features of a superconductor at high critical temperature, a material with major prospects for technological applications. In addition to providing an explanation for the peculiar behaviour of the material, the study also opens to the possibility of controlling its characteristics by means of laser pulses.

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor

Trieste, Italy | Posted on July 15th, 2014

uperconductors are futuristic materials that will hopefully have a broad range of technological applications at some time in the future (medical imaging, transport…). Today's use is limited by the extremely low temperatures (close to absolute zero) required for superconductivity to manifest. However, some families of these materials work at "relatively" high temperatures (about - 200° C), and it's on these that scientists are focusing their attention. Among them are copper-based superconductors, which have very unique characteristics. A study conducted by researchers of the International School for Advanced Studies (SISSA) of Trieste, the iLamp laboratory of the Catholic University of the Sacred Heart (Brescia), the T-Rex laboratory of the Elettra Synchrotron (Trieste), the Department of Physics of the University of Trieste and other international centres analysed a phenomenon typical of these materials and known to scientists as the pseudogap.

"When the material is heated to above the critical temperature, under which superconductivity manifests itself", explains Massimo Capone a SISSA researcher who took part in the study, "some of the features of the superconductive state are preserved, even though the main one is lost. This condition is called a pseudogap".

The team conducting the study induced a pseudogap state in the material, which it then subjected to very short pulses of laser light. "This treatment made the superconductor temporarily more ‘metallic', a state not normally manifested in this condition. We then interrupted the pulses and observed how the material behaved when it returned to its original state", continues Capone. "What we induced is in fact a transient state - lasting less than a picosecond - which we realised was related to electron-electron interactions. The light pulses remove these interactions, making the electrons freer to flow: hence the metallic state".

Capone, whose role in this (mainly experimental) study was to contribute to interpreting the data collected, explains that it's most probably the electron-electron interactions that are responsible for the pseudogap state.

"In addition to offering a theoretical framework for the phenomenon and providing new insight into this major family of superconductors, our study opens to an important possibility of controlling and modulating the characteristics of superconductors through the use of laser light".


Full bibliographic information

Photo-enhanced antinodal conductivity in the pseudogap state of high-Tc cuprates

F. Cilento, S. Dal Conte, G. Coslovich, S. Peli, N. Nembrini, S. Mor, F. Banfi, G. Ferrini, H. Eisaki, M. K. Chan, C. J. Dorow, M. J. Veit, M. Greven, D. van der Marel, R. Comin, A. Damascelli, L. Rettig, U. Bovensiepen, M. Capone, C. Giannetti et al.

Nature Communications 5, Article number: 4353 doi:10.1038/ncomms5353 Published 11 July 2014

####

For more information, please click here

Contacts:
Federica Sgorbissa

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Superconductivity

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project