Home > Press > Toward a new way to keep electronics from overheating
![]()  | 
| Overheating computers could soon be a thing of the past with the development of a new nanocoolant. Credit: Todd Warnock/Photodisc/Thinkstock  | 
Abstract:
Computer technology has transformed the way we live, but as consumers expect ever more from their devices at faster speeds, personal computers as well as larger electronic systems can overheat. This can cause them to slow down, or worse, completely shut down. Now researchers are reporting in the ACS journal Industrial & Engineering Chemistry Research that liquids containing nanoparticles could help devices stay cool and keep them running.
Rahman Saidur and colleagues point out that consumers demand a lot out of their gadgets. But that puts a huge strain on the tiny parts that whir away inside desktops and mainframe computers, which do the major data crunching for us. The result is overheating. Recent research has shown that substances called nanofluids have the potential to help keep electronics cool. They are made of metallic nanoparticles that have been added to a liquid, such as water. But there are many different kinds, and past research on their coolant abilities has been limited. To help sort through them, Saidur's team set out to determine which ones might work best.
Using something called a microchannel heat sink to simulate the warm environment of working electronic systems, they analyzed three nanofluids for the traits that are important in an effective coolant. These include how well they transfer heat, how much energy they lose, the friction they cause and their pumping power. All three performed better than water as coolants with the nanofluid mixture of copper oxide and water topping them all.
The authors acknowledge funding from the Ministry of Education Malaysia.
####
About American Chemical Society 
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
For more information, please click here
Contacts:
Michael Bernstein
202-872-6042
Rahman Saidur, Ph.D.
Department of Mechanical Engineering
and
UM Power Energy Dedicated Advanced Centre
University of Malaya
Kuala Lumpur
Malaysia
Phone: +603-7967-7611
Copyright © American Chemical Society
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Hardware
    The present and future of computing get a boost from new research July 21st, 2023
Microfluidics/Nanofluidics
    Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
    Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
    Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Nanoelectronics
    Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
    Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
    Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
    Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Alliances/Trade associations/Partnerships/Distributorships
    Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
    University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||