Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanofluids Improve Performance of Automobile Radiator

Abstract:
Iranian chemical engineers from Ferdowsi University of Mashhad studied the performance of automobile radiators and realized that when nanofluids are used in the radiators, significant increase is observed in the amount of heat transfer in those systems.

Nanofluids Improve Performance of Automobile Radiator

Tehran, Iran | Posted on July 1st, 2014

Results of the research showed that nanofluids are good replacements for cooling fluid in radiators and thermal exchangers.

Materials with higher thermal properties are required to increase the performance of radiator. The use of nanofluids is one of the methods to increase heat transfer in radiators. In this research, cooling of car radiator has been investigated by using nanofluids. Results of the research indicated that the used nanofluid can increase heat transfer up to 50%. Reduction in size and weight of the radiators are among the achievements of this research.

In addition to reducing the production cost, better designation of cars are possible when the radiator becomes smaller in size. On the other hand, better cooling has positive effects on fuel consumption and the amount of fuel consumption decreases.

Nanofluids are produced by stable dispersing of nanoparticles in heat transfer fluids that are usually water or ethylene glycol. In this research, a system similar to car radiator cooling system has been designed and produced. Nanofluid (60 to 40 mixture of water to ethylene glycol) was used instead of radiator cooling fluid. Titanium oxide (TiO2) and copper oxide (CuO) were used as nanoparticles in this research.

Based on the results, more increase in heat transfer occurs when copper oxide nanoparticles are used in comparison with titania nanoparticles.

Results of the research have been published in Journal of Dispersion Science and Technology, vol. 35, issue 5, May 2014, pp. 677-682.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project