Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reduction of Particle Size Modifies Magnetic Properties of Materials

Abstract:
Iranian researchers from Isfahan University of Technology modified the properties of a magnetic material by using nanotechnology, which has many applications in various industries.

Reduction of Particle Size Modifies Magnetic Properties of Materials

Tehran, Iran | Posted on June 17th, 2014

Barium ferrite is a magnetic material that is used in the production of permanent magnets, magnetic sorption environment and microwave adsorbents. Size, structure, and magnetic properties of the material highly depend on the production conditions and the nature of the raw material used in the production process.

According to the supervisor of the research, Dr. Parviz Kameli, effort was made in this research to investigate the produced barium ferrite nanoparticles and the effect of re-cooking temperature on magnetic properties of the final product.

In the present studies, various methods, including sol-gel or hydrothermal methods, have usually been used for the production of barium ferrite nanoparticles. But in this research, the nanoparticles have been produced through co-precipitation method in the presence of high concentration of hydroxide ions and low process temperature.

Taking into consideration the low temperature of the production process, reduction in energy consumption and increase in the production rate of the final product are among the important results of the research.

FE-SEM images taken from the structure of the product show that the re-cooking temperature is an important parameter in controlling the size of particle diameter from nanometric to micrometric scale, to the extent that as temperature increases from 90 to 1200°C, the size of nanoparticles changes from a few nanometers to micrometers.

On the other hand, magnetic properties of the nanoparticles increase as the re-cooking temperature increases. In this report, the best temperature was reported to be 900°C to obtain magnetic properties and the optimum particle size.

Results of the research have been published in Ceramics International, vol. 40, issue 5, January 2014, pp. 7279-7284.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Industrial

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project