Home > Press > Scientists Use Nanocomposites to Improve Properties of Thermal Block Coatings
Abstract:
Iranian researchers from Materials and Energy Researcher Center tried to modify the properties of thermal insulations used in turbines and thermal engines through nanotechnology.
Results of the research may help the increase in thermal efficiency and lifetime of gas turbines and diesel engines. Thermal block coating (TBC) is a thermal insulation that is used in gas turbines and engines. Among other applications of the coating, mention can be made of protecting thermal and mechanical pieces against hot corrosion and erosion which increases the lifetime of the pieces.
When the results of the research are used in thermal block coatings, thermal loss decreases and concurrently average temperature in combustion chamber increases in diesel engine and gas turbine. In other words, the results of the research help increasing thermal efficiency of diesel engines and decrease their fuel consumption.
Alumina coating has been created in this research through atmospheric plasma spraying (APS) method. This method has higher efficiency but less cost in comparison with methods such as vapor deposition by using electron radiation.
To put it in brief, in case the operation to create nanostructured coatings takes place correctly, it can improve the properties for various applications, including resistance to abrasion, hardness, elasticity module, cohesion strength, resistance to heat diffusion, resistance to thermal shock and resistance to cyclic oxidation.
Results of the research have been published in Ceramics International, vol 40, issue 3, April 2014, pp. 4579-4590.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |