Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press
This is a schematic presentation of plasmonic-enhanced two-photon fluorescence of a single emitter inside or outside of an individual gold nanoshell.

Credit: ©Science China Press

Abstract:
Two-photon excitation fluorescence is growing in popularity in the bioimaging field but is limited by fluorophores' extremely low two-photon absorption cross-section. The researcher Dr. Guowei Lu and co-workers from State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, are endeavoring to develop efficient fluorescent probes with improved two-photon fluorescence (TPF) performance. They theoretically present a promising bright probe using gold nanoshell to improve the TPF performances of fluorescent emitters. Their work, entitled "Plasmonic-Enhanced Two-Photon Fluorescence with Single Gold Nanoshell", was published in SCIENCE CHINA Physics, Mechanics & Astronomy.2014, Vol 57(6).

Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe

Shenyang, PR China | Posted on May 22nd, 2014

The strategy of using metallic nanoparticles to achieve the TPF enhancement is an appealing scheme so-called metal-enhanced fluorescence. It is based on the coupling of the fluorophores and the plasmonic nanoparticles, resulting in enhanced fluorescence intensity, shortened fluorescence lifetime, and extended photostability. Specifically, the fluorescence enhancement can be optimally controlled through simultaneous efficient coupling between the excitation and emission processes of emitters and the dipolar and quadrupolar modes of the nanoparticles, respectively.

Among various types of metal nanoparticles, metallic nanoshells are especially suitable as the carriers of fluorescent emitters to construct hybrid TPF probes, because their plasmon resonance bands easily span the near-infrared region where biological tissues display minimal autofluorescence and absorption. The nanoshells act as optical antenna enabling the local field enhancement, the increase in radiative decay rate of the fluorophore that alters the quantum efficiency, and modulation of the far-field radiative coupling of fluorescence emission through nanoparticle scattering. Also, the core shell structure offers a perfect platform for designing and fabricating multifunctional nanoparticles.

The Peking University researchers employed the finite-difference time-domain method to systematically evaluate the two-photo fluorescence behavior of single emitter single nanoshell configuration. Simultaneous excitation and emission enhancements could be achieved by the suitable dimensions of the nanoshell. They found that the emitter located inside or outside the nanoshell at various positions led to significantly different enhancement effect. (as shown in the Figure).

The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled, but the TPF enhancement decays rapidly with the increase of distance between the emitter and the shell surface. In contrast, for the case of the emitter placed inside the nanoshell, it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations, the radiative light can be coupled efficiently with the far field. Besides, the metal shell protects the encapsulated fluorophores from the external environment. The stability of fluorophores can be improved by the strong coupling between the fluorophores and the nanoshell resulting in a shorter fluorescence lifetime. These considerations imply that fluorophores encapsulated in metallic nanoshells is a more desirable nanocomposite configuration for the TPF probe in bioimaging applications.

This work provides a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors, and the nanocomposite configuration has great potential for optical detecting, imaging and sensing in biological applications.

###

The paper's co-authors are Peking University graduate students Zhang Tianyue, Shen Hongming and collaborative scientists Perriat, P.; Martini, M.; Tillement, O. from CNRS, France. This research project was supported by a grant from the National Natural Science Foundation of China and the National Key Basic Research Program of China.

####

For more information, please click here

Contacts:
LU Guowei

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: ZHANG TianYue, LU GuoWei, SHEN HongMing, Perriat P, Martini M, Tillement O, GONG QiHuang. Plasmonic-enhanced two-photon fluorescence with single gold nanoshell. SCIENCE CHINA Physics, Mechanics & Astronomy, 2014, 57 (6): 1038-1045:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project