Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanosponge decoy fights superbug infections: A good disguise enables the nanosponge to soak up toxins from drug-resistant infections or poisons

Cancers are notorious for secreting chemicals that confuse the immune system and thwart biological defenses. Researchers at Yale University have developed a novel system to simultaneously deliver a sustained dose of both an immune-system booster and a chemical to counter the cancer's secretions, resulting in a powerful therapy that, in mice, delayed tumor growth, sent tumors into remission and dramatically increased survival rates. The new immunotherapy incorporates well-studied drugs, but delivers them using nanolipogels (NLGs), a new drug transport technology the researchers designed. 
Credit: Nicolle Rager Fuller, National Science Foundation
Cancers are notorious for secreting chemicals that confuse the immune system and thwart biological defenses. Researchers at Yale University have developed a novel system to simultaneously deliver a sustained dose of both an immune-system booster and a chemical to counter the cancer's secretions, resulting in a powerful therapy that, in mice, delayed tumor growth, sent tumors into remission and dramatically increased survival rates. The new immunotherapy incorporates well-studied drugs, but delivers them using nanolipogels (NLGs), a new drug transport technology the researchers designed.

Credit: Nicolle Rager Fuller, National Science Foundation

Abstract:
Our first instinct with infection in the body is often to find it and get rid of it! But, engineer Liangfang Zhang had another idea. With support from the National Science Foundation (NSF), Zhang and his team at the University of California, San Diego (UCSD), have created a nanosponge to combat drug-resistant infections, such as those caused by Methicillin-resistant Staphylococcus aureus (MRSA).

Nanosponge decoy fights superbug infections: A good disguise enables the nanosponge to soak up toxins from drug-resistant infections or poisons

Arlington, VA | Posted on April 28th, 2014

The nanosponge, made from biocompatible, biodegradable polymer nanoparticles, is camouflaged with a red blood cell membrane. It circulates in the bloodstream, absorbing the toxins produced by infection. One red blood cell membrane can be used as a cloak for more than 3,000 of these stealthy nanosponges. Once the nanosponges are fully loaded with toxins, they are safely disposed of by the liver. They are designed to work with any type of infection or poison that attacks the cellular membrane.

Zhang is working closely with doctors and students at the UCSD Moores Cancer Center on this "nano" approach to tackling infections. He has been testing his approach on mice, with nearly a 100 percent success rate against staph infections. Human clinical trials are the next step!

The research in this episode was funded by NSF award #1216461, EAGER: Red Blood Cell Membrane Camouflaged Nanoparticles for Drug Delivery.

####

For more information, please click here

Contacts:
Miles O'Brien
Science Nation Correspondent


Marsha Walton
Science Nation Producer

Copyright © National Science Foundation (NSF)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project