Home > Press > Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications
The VUV lamp, which has a potential to be powerful tool for the surface treatment and optical cleaning, was demonstrated. CREDIT: S. ONO/Nagoya Institute of Technology (NITech) |
Abstract:
A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This is within the range of vacuum-UV light -- so named because while light of that energy can propagate in a vacuum, it is quickly absorbed by oxygen in the air.
This fact makes vacuum UV light extremely useful for industrial applications from sterilizing medical devices to cleaning semiconductor substrates because when it strikes oxygen-containing molecules on a surface, it generates highly reactive oxygen radicals, which can completely destroy any microbes contaminating that surface.
Existing commercial vacuum UV lamps are bulky and expensive, however. They also use a lot of power, run hot, have short lifetimes and contain toxic gasses that can pollute the environment and harm people. The new lamp avoids those issues because it was fabricated with a solid-state phosphor made from a thin film of KMgF3, which is easy to make, avoids the use of toxic gasses and does not require expensive rare earth elements.
In AIP Publishing's journal APL-Materials, the Japanese team describes how this solid-state phosphor promises to make future, low-power vacuum UV lamps that will be more flexible in design as well as being smaller, longer lasting and relatively heat-free -- all traits that are typical advantages of solid state lighting in general.
"Our lamp is a promising light source in terms of lifetime, size, heat conduction and stability," said Shingo Ono of the Nagoya Institute of Technology in Japan, who led the research. "[It] has the potential to be an excellent alternate light source to low-pressure mercury lamps, excimer lamps and deuterium lamps."
In addition to Ono and his colleagues at Nagoya Institute of Technology, the team was comprised of researchers from Universiti Teknologi Malaysia; the Tokuyama Corporation in Tokyo; Tohoku University in Sendai, Japan; and the Kyushu Institute of Technology in Kitakyushu, Japan.
One of the hurdles they faced was to safely fabricate the phosphor using a compound containing fluoride, which is itself a toxic, corrosive and potentially dangerous chemical to handle. One way would have been to use an inflow of gaseous fluoride to coat the surface of the KMgF3 thin film, but instead the team discovered a safer route to fabricating it with pulsed laser deposition -- a way of layering thin films of chemicals onto surfaces through irradiation with a focused laser beam.
####
About American Institute of Physics
About the journal:
APL Materials
APL Materials is a new open access journal featuring original research on significant topical issues within the field of functional materials science.
For more information, please click here
Contacts:
Jason Socrates Bardi
240-535-4954
Copyright © American Institute of Physics
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||