Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A mathematical equation that explains the behavior of nanofoams

nanofoams
nanofoams

Abstract:
A research study, participated in by Universidad Carlos III de Madrid (UC3M), has discovered that nanometric-size foam structures follow the same universal laws as does soap lather: small bubbles disappear in favor of the larger ones.

A mathematical equation that explains the behavior of nanofoams

Madrid, Spain | Posted on March 22nd, 2014

The scientific team, made up of researchers from the Consejo Superior de Investigaciones Científicas (Spanish National Research Council) - CSIC, the Universidad Pontificia Comillas de Madrid- UPCO, and UC3M, reached this conclusion after producing and characterizing nanofoam formed by ion radiation on a silicon surface. This study, recently published in the journal, Physical Review Letters, describes the evolution of these nanostructures during the time of irradiation.

For this purpose, the scientists carried out an experiment that consisted in "bombardment" of a small silicon plate with energetic particles from a plasma. The objective was to observe how the surface of this crystal reacted to these different "attacks" from this type of ion radiation (ions are used: atoms of a gas that have lost an electron). "At the outset, we were studying other methods of erosion and looking for a rippled structure at the edge of our sample after applying this technique, but when we looked at its center we observed a cellular structure that got our attention because of its similarity to many other natural and artificial systems," one of the authors of the study, Mario Castro, UPCO Professor, revealed.

Cellular structures that are more or less disordered can be found in many natural systems: from the hides of animals, such as a giraffe, to bath froth or beer foam, to microscopic fluid convection, basalt column landscapes or diverse crystalline materials. This particular order is also evident in artificial structures and even political ones, such as modern architecture or demarcation of provinces on maps.

"It is of interest to confirm that the same universal laws which regulate the cellular structures in other systems are also regulating at the nanoscale," Rodolfo Cuerno from the UC3M Mathematics Department noted. "Furthermore," he added "it is the first time that the evolution of a system of this kind is reproduced quite well by a single differential equation," which also is applied to other systems. The validity of the model in this study means that the formation of certain self-organized patterns and the dynamics of the foam would be different manifestations of a same principle.

"The results of this study help us to understand how certain material systems evolve in the presence of an external agent, as in this case of ion radiation. In addition, there exists interest of a practical nature because of the importance of the technological applications of silicon as well as for the nanometric dimensions in which the phenomenon unfolds," explained Luis Vázquez, from the Instituto de Ciencia de Materiales (Materials Science Institute) de Madrid at the CSIC.

The experimental observations have been carried out using an atomic force microscope, a machine with great precision. This type of microscope has enormous spatial resolution: it distinguishes variations in height up to a nanometer (the millionth part of a millimeter) and movements on a horizontal plane of up to 10 nanometers.

This research could have further future applications, since in general, methods are being sought to produce structures with nanometric dimensions for diverse uses, according to the scientists: for example, in order to obtain favorable conditions in certain catalytic chemical reactions, to optimize displacement of fluids in circuits on such small scale or in optoelectronics, to generate laser light if certain structures are sufficiently ordered.

####

About Universidad Carlos III de Madrid
The objetive of Scientific Information Bureau of Carlos III University of Madrid is enhancing the transfer of knowledge to the business sector, as well as fomenting public awareness of the results of its research.

The Carlos III University of Madrid is in the Community of Madrid, 15 minutes to the city centre from its nearest campus. The three campuses are located in Getafe and Leganés, to the south of the capital, and in Colmenarejo, to the north-east.

For more information, please click here

Contacts:
Ana María Herrera
+34916246231

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

Chemistry

Quantum interference in molecule-surface collisions February 28th, 2025

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Optical computing/Photonic computing

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project