Home > Press > Inhibition of oral biofilm and cell-cell communication using natural-products derivatives
![]() |
Abstract:
Today during the 43rd Annual Meeting & Exhibition of the American Association for Dental Research, held in conjunction with the 38th Annual Meeting of the Canadian Association for Dental Research, Steve Kasper, SUNY College of Nanoscale Science and Engineering, Albany, will present research titled "Inhibition of Oral Biofilm and Cell-cell Communication Using Natural-products Derivatives."
Many plant metabolites and structurally similar derivatives have been identified as inhibitors of bacterial biofilm formation and quorum sensing (QS). Previously, the researchers of this study demonstrated biofilm and QS inhibition using modified cysteines, similar to those produced by the tropical plant Petiveria alliacea. In this study the researchers expanded their compound library to examine structure-activity relationships for biofilm and QS inhibition.
Using a microplate-based screening approach, they observed the biofilm formation by three indigenous oral Gram-positive bacteria: Streptococcus mutans UA159, Streptococcus sanguis 10556, and Actinomyces oris MG1. Bacteria were grown in the presence of inhibitory compounds and analyzed using fluorescent staining for biomass and via confocal microscopy.
Compounds were also tested in a Vibrio harveyi QS reporter which responds to autoinducer-2 (AI-2) signaling (interspecies) but not acyl-homoserine lactone signaling (intraspecies). Reverse transcriptase real-time PCR and global RNA sequencing (RNAseq) were used to study modified genetic expression in S. mutans UA159 in the presence of select compounds from our library.
From their 46 compound library, six were capable of inhibiting biofilm formation in all three species tested at a concentration of 1mM. All six compounds are structurally similar to S-ribosyl homocysteine, the precursor for autoinducer-2 biosynthesis. These compounds also reduced bioluminescence in V. harveyi BB170, indicating inhibition of AI-2 based QS. Gene expression analysis showed distinct down-regulation of genes previously related to quorum sensing and/or biofilm formation in S. mutans.
The use of plant-inspired cysteine derivatives to inhibit bacterial virulence may serve as a novel tool to improve oral health. The researchers of this study propose that the compounds used in this study may inhibit biofilm formation by interrupting bacterial communication pathways, particularly in AI-2 biosynthetic reactions. Since their library is derived from eukaryotic (plant) origins, this study may provide initial evidence of interkingdom signaling, which has implications for studies of the human microbiome.
###
This research was supported by NIH NIDCR grant # 5R03DE020834-02.
This is a summary of abstract #362, "Inhibition of Oral Biofilm and Cell-cell Communication Using Natural-products Derivatives," which will be presented on Thursday, March 20, 2014: 2 p.m. - 3:15 p.m. in Exhibit Hall AB of the Charlotte Convention Center.
####
About International & American Associations for Dental Research
The American Association for Dental Research (AADR), headquartered in Alexandria, Va., is a nonprofit organization with more than 3,600 members in the United States. Its mission is: (1) to advance research and increase knowledge for the improvement of oral health; (2) to support and represent the oral health research community; and (3) to facilitate the communication and application of research findings. AADR is the largest Division of the International Association for Dental Research (IADR). To learn more about the AADR, visit www.aadr.org.
For more information, please click here
Contacts:
Ingrid L. Thomas
703-299-8084
Copyright © International & American Associations for Dental Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Dental
Innovations in dentistry: Navigational surgery, robotics, and nanotechnology October 2nd, 2020
First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020
Gas storage method could help next-generation clean energy vehicles: Tremendous amounts of hydrogen and methane can be stored in nanoscopic pores April 17th, 2020
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |