Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mexican University develops chemicals to optimize solar cells

energia solar
energia solar

Abstract:
Specialists at the Institute of Materials Research of the National Autonomous University of Mexico (IIM -UNAM) developed chemical compounds that will collect energy from the sun with an energy transfer efficiency close to one hundred percent. This phenomenon would allow the design of a new generation of photovoltaic compounds that would achieve to capture light in the spectral range of UV - visible light in a more optimal way, in order to convert it into electricity.

Mexican University develops chemicals to optimize solar cells

Roma, Mexico | Posted on March 16th, 2014

Dr. Ernesto Rivera Garcia, scientist at the IIM -UNAM explained that to achieve that goal, currently a type of chemicals called dendritic are synthesized (they have ramifications as the dendrites of neurons). These compounds may be used in solar cells.

According to the explanation of Dr. Rivera Garcia, dendritic compounds synthesized at UNAM contain two chemical groups called porphyrin and pyrene, which interact with each other. "Several pyrene groups (donor) are excited and transfer all their energy to a single porphyrin group (acceptor), this happens in one of the molecules of the dendritic compounds," said the scientist.

"The fact that several donor groups are excited and transfer energy to an acceptor photoconductor group causes more efficiency in capturing sunlight and generating power," said the university researcher. Rivera García noted that this physical phenomenon is known as "antenna effect " , the same way a conventional antenna picks up a wave and amplifies to send to various devices, molecular pyrene groups receiving sunlight and transferring it to another group called porphyrin.

The university researcher said that in an effort to take advantage of this physical principle in the solar cells, the molecules would be modified for use in these power generation technologies. "For example, we can add some chemical groups such as carbazole or triphenylamine, the structure of these compounds is more efficient for power generation," said Garcia Rivera.

The scientist at the Institute of Materials Research at UNAM added that currently research projects are open, seeking to apply the principle of "antenna effect" on solar cells, but using graphene , one of the most promising materials due, among multiple factors , to its photoconductive properties . (Agencia ID)

####

For more information, please click here

Contacts:
José Gotés

Copyright © alphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project