Home > Press > Mexican University develops chemicals to optimize solar cells
![]() |
energia solar |
Abstract:
Specialists at the Institute of Materials Research of the National Autonomous University of Mexico (IIM -UNAM) developed chemical compounds that will collect energy from the sun with an energy transfer efficiency close to one hundred percent. This phenomenon would allow the design of a new generation of photovoltaic compounds that would achieve to capture light in the spectral range of UV - visible light in a more optimal way, in order to convert it into electricity.
Dr. Ernesto Rivera Garcia, scientist at the IIM -UNAM explained that to achieve that goal, currently a type of chemicals called dendritic are synthesized (they have ramifications as the dendrites of neurons). These compounds may be used in solar cells.
According to the explanation of Dr. Rivera Garcia, dendritic compounds synthesized at UNAM contain two chemical groups called porphyrin and pyrene, which interact with each other. "Several pyrene groups (donor) are excited and transfer all their energy to a single porphyrin group (acceptor), this happens in one of the molecules of the dendritic compounds," said the scientist.
"The fact that several donor groups are excited and transfer energy to an acceptor photoconductor group causes more efficiency in capturing sunlight and generating power," said the university researcher. Rivera García noted that this physical phenomenon is known as "antenna effect " , the same way a conventional antenna picks up a wave and amplifies to send to various devices, molecular pyrene groups receiving sunlight and transferring it to another group called porphyrin.
The university researcher said that in an effort to take advantage of this physical principle in the solar cells, the molecules would be modified for use in these power generation technologies. "For example, we can add some chemical groups such as carbazole or triphenylamine, the structure of these compounds is more efficient for power generation," said Garcia Rivera.
The scientist at the Institute of Materials Research at UNAM added that currently research projects are open, seeking to apply the principle of "antenna effect" on solar cells, but using graphene , one of the most promising materials due, among multiple factors , to its photoconductive properties . (Agencia ID)
####
For more information, please click here
Contacts:
José Gotés
Copyright © alphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |