Home > Press > Production of Aluminum-Ceria Nanocatalyst through Micro-Emulsion Method
Abstract:
Iranian researchers succeeded in the production of alumina-ceria nanocatalyst through micro-emulsion method.
The nanocatalyst was produced in the presence of various surfactants, and has optimized size, shape and properties. It also has high performance and can be recycled easily and be used in petroleum and petrochemical industries and production of ceramic powders.
Cerium oxide is one of the catalysts commonly used in chemical industries. Due to expensive raw material and high production cost, this catalyst is usually combined with alumina. The combined catalyst of alumina-ceria is used in oxidation processes of carbon monoxide and nitrogen oxides.
According to the results obtained from the research, although the size of the obtained catalyst nanoparticles depended on the type of the used surfactant, the nanoparticles had homogenous, narrow and similar size distribution for each of the surfactant types.
Comparison of images taken from the samples by scanning electron microscope and transmission electron microscope showed that cetyltrimethylammonium bromide surfactant presented finer particle size, wider shape and less accumulation in comparison with the other two surfactants.
Each layered particle is covered by surfactant in micro-emulsion method. As a result, accumulation reaches its minimum possible amount, and nanometric particles with desirable shape, high specific area and appropriate activity can be obtained by controlling process conditions. Due to their higher surface area comparing to homogenous catalyst particles, catalytic nanoparticles are not dissolved in the solution and they can be separated easily.
Results of the research have been published in Ceramics International, vol. 40, issue 3, October 2014, pp. 4933-4937.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |