Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

Diagram of the new design.
Diagram of the new design.

Abstract:
"Semiconductor Solar Superabsorbers"

Authors: Yiling Yu, Lujun Huang, and Linyou Cao, North Carolina State University

Published: Feb. 17, 2014, Scientific Reports

DOI: 10.1038/srep04107

Abstract: Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques.

Superabsorbing Design May Lower Manufacturing Cost of Thin Film Solar Cells

Raleigh, NC | Posted on February 26th, 2014

Researchers from North Carolina State University have developed a "superabsorbing" design that may significantly improve the light absorption efficiency of thin film solar cells and drive down manufacturing costs.

The superabsorbing design could decrease the thickness of the semiconductor materials used in thin film solar cells by more than one order of magnitude without compromising the capability of solar light absorption.

Diagram of the new design. Click to enlarge.

"State-of-the-art thin film solar cells require an amorphous silicon layer that is about 100 nanometers (nm) thick to capture the majority of the available solar energy," says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work. "The structure we're proposing can absorb 90 percent of available solar energy using only a 10 nm thick layer of amorphous silicon.

"The same is true for other materials. For example, you need a cadmium telluride layer that is one micrometer thick to absorb solar energy, but our design can achieve the same results with a 50 nm thick layer of cadmium telluride. Our design can also enable a 30 nm thick layer of copper indium gallium selenide to fully absorb solar light. That's a huge advance."

Cao notes that the deposition of semiconductor materials stands as a major bottleneck for improving manufacturing productivity and lowering the cost of thin film solar cells. "A decrease in the thickness of semiconductor materials by one order of magnitude would mean a substantial improvement in manufacturing productivity and reduction in cost," Cao says, because the cells would use less material and the thin films could be deposited more quickly.

In cross-section, the new design looks like a rectangular onion. The light-absorbing semiconductor material coats a rectangular core. The semiconductor, in turn, is coated by three layers of anti-reflective coating that do not absorb light.

To develop the design, the researchers began by examining the maximum light absorption efficiency of semiconductor materials using light-trapping techniques. They found that maximizing solar absorption requires a design in which the light-trapping efficiency for solar light is equal to the intrinsic absorption efficiency of the semiconductor materials. In other words, in order to maximize solar absorption, you need to match the amount of solar light trapped inside the structure and the amount of solar light that could be absorbed. The researchers then designed the onion-like structures to match their light-trapping efficiency with the absorption efficiency of the semiconductor materials in thin film solar cells.

"We first theoretically predicted the maximum solar light absorption efficiency in given semiconductor materials, and then proposed a design that could be readily fabricated to achieve the predicted maximum. We developed a new model to do this work, because we felt that existing models were not able to find the upper limit for the solar absorption of real semiconductor materials," Cao says "And if this works the way we think it will, it would fundamentally solve light-absorption efficiency problems for thin film solar cells.

"The superabsorbing structure is designed for the convenience of fabrication, and we are looking for partners to produce and test this design," Cao adds. "The structure should be very easy to produce with standard thin film deposition and nanolithography techniques. We are happy to work with industry partners to implement this design in the production of next-generation solar cells."

####

For more information, please click here

Contacts:
Matt Shipman

919-515-6386

Dr. Linyou Cao
919.515.5407

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “Semiconductor Solar Superabsorbers,” was published Feb. 17 in the journal Scientific Reports. Lead author of the paper is Yiling Yu, a Ph.D. student at NC State. The paper was co-authored by NC State Ph.D. student Lujun Huang:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project