Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clever NIST/JPL technology decodes more information from single photons

This NIST device, 1.5 by 3 centimeters in outer dimensions, is a prototype receiver for laser communications enabling much higher data rates than conventional systems. Superconducting detectors in the center of the small square chip register the timing and position of single particles of light.

Credit: Verma and Tomlin/NIST
This NIST device, 1.5 by 3 centimeters in outer dimensions, is a prototype receiver for laser communications enabling much higher data rates than conventional systems. Superconducting detectors in the center of the small square chip register the timing and position of single particles of light.

Credit: Verma and Tomlin/NIST

Abstract:
It's not quite Star Trek communications—yet. But long-distance communications in space may be easier now that researchers at the National Institute of Standards and Technology (NIST) and Jet Propulsion Laboratory (JPL) have designed a clever detector array that can extract more information than usual from single particles of light.

Clever NIST/JPL technology decodes more information from single photons

Boulder, CO | Posted on February 12th, 2014

Described in a new paper,* the NIST/JPL array-on-a-chip easily identifies the position of the exact detector in a multi-detector system that absorbs an incoming infrared light particle, or photon. That's the norm for digital photography cameras, of course, but a significant improvement in these astonishingly sensitive detectors that can register a single photon. The new device also records the signal timing, as these particular single-photon detectors have always done.

The technology could be useful in optical communications in space. Lasers can transmit only very low light levels across vast distances, so signals need to contain as much information as possible.

One solution is "pulse position modulation" in which a photon is transmitted at different times and positions to encode more than the usual one bit of information. If a light source transmitted photons slightly to the left/right and up/down, for instance, then the new NIST/JPL detector array circuit could decipher the two bits of information encoded in the spatial position of the photon. Additional bits of information could be encoded by using the arrival time of the photon.

The same NIST/JPL collaboration recently produced detector arrays for the first demonstration of two-way laser communications outside Earth's orbit using the timing version of pulse position modulation.** The new NIST/JPL paper shows how to make an even larger array of detectors for future communications systems.

The new technology uses superconducting nanowire single-photon detectors. The current design can count tens of millions of photons per second but the researchers say it could be scaled up to a system capable of counting of nearly a billion photons per second with low dark (false) counts. The key innovation enabling the latest device was NIST's 2011 introduction of a new detector material, tungsten-silicide, which boosted efficiency, the ability to generate an electrical signal for each arriving photon.*** Detector efficiency now exceeds 90 percent. Other materials are less efficient and would be more difficult to incorporate into complex circuits.

The detectors superconduct at cryogenic temperatures (about minus 270 °C or minus 454 °F), and cooling needs set a limit on wiring complexity. The NIST/JPL scheme requires only twice as many wires (2N) as the number of detectors on one side of a square array (N x N), greatly reducing cooling loads compared to a one-wire-per-detector approach while maintaining high timing accuracy. NIST researchers demonstrated the scheme for a four-detector array with four wires and are now working on a 64-detector array with 16 wires.

In the circuit, each detector is located in a specific column and row of the square array. Each detector acts like an electrical switch. When the detector is in the superconducting state, the switch is closed and the current is equally distributed among all detectors in that column. When a detector absorbs a photon, the switch opens, temporarily diverting the current to an amplifier for the affected column while reducing the signal through the affected row. As a result, the circuit generates a voltage spike in the column readout and a voltage dip in the row readout. The active detector is at the intersection of the active column and row.

###

The research was supported by the Defense Advanced Research Projects Agency.

*V.B. Verma, R. Horansky, F. Marsili, J.A. Stern, M.D. Shaw, A.E. Lita, R.P. Mirin and S.W. Nam. A four-pixel single-photon pulse position camera fabricated from WSi superconducting nanowire single photon detectors. Applied Physics Letters 104, 051115. DOI: 10.1063/1.4864075. Posted online Feb. 4, 2014.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

**See Oct. 28, 2013, National Aeronautics and Space Administration news release, "Historic Demonstration Proves Laser Communication Possible," at www.nasa.gov/content/goddard/historic-demonstration-proves-laser-communication-possible/#.Um62W3Dkvv2:

***See 2011 NIST Tech Beat article, "Key Ingredient: Change in Material Boosts Prospects of Ultrafast Single-photon

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Superconductivity

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Aerospace/Space

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project