Home > Press > Big in small things: Physicists of Kiel University are the first to move an atom inside a crystal and investigate its function
The first to move an atom inside a crystal: Alexander Weismann and Hao Zheng in front of the scanning tunneling microscope Photo/Copyright: Wimber/CAU |
Abstract:
Nanotechnology is a thriving science. Parts for computers for example are becoming smaller and more precise by the minute. One of the most efficient computers would be the so-called quantum computer. Up to now, its existence has been merely a concept that is based on the laws of quantum mechanics. Here, the ability to control the state of single atoms is decisive. For the first time ever, scientists of Kiel University have managed to move single atoms vertically inside a crystal. This is important for the further development of nano structures. Simultaneously, the physicists found a method for measuring a transistor-like behaviour of single atoms. These findings have recently been published in the scientific magazine Nature Communications (January, 3rd, 2014) as well as in the renowned Physical Review Letters.
When manufacturing nano structures, the understanding, analysing and handling of materials present major challenges. A widely used and investigated material for piezo-, micro-, and optoelectronic devices is zinc oxide (ZnO). As a semiconductor it is built into light-emitting diodes (LED) and LCD-displays. Also, it is used as nanowires in electrical measurement technology. Some of its properties - such as the conductivity of the pure material - have to date not been understood. A major step towards solving this mystery was recently made by Dr. Hao Zheng, Dr. Alexander Weismann and Professor Richard Berndt of the Institute of Experimental and Applied Physics at Kiel University. While experimenting at the Collaborative Research Center "Magnetoelectric Composites - Future Biomagnetic Interfaces", Zheng was analysing zinc oxide with the scanning tunnelling microscope (STM). This device is able to image crystals on an atomic scale. He discovered circular structures in the otherwise irregular surface. "We found that they are a result of zinc atoms that were incorrectly positioned in the crystal lattice", says Zheng.
Each of the discovered atoms featured two rings - a clear proof that it can donate two electrons. "We studied all scientific literature to find out that no-one had so far proven why zinc oxide is conductive. The logical conclusion was that the reason must lie within the newly found zinc atoms, which are naturally occurring in this material."
Further research led Dr. Zheng to discover that the ring's size could be varied while being exposed to experiments in the scanning tunnelling microscope. He asked for the help of his colleague Weismann, who is an expert for model calculation. "The calculation hinted that the diameter of the ring revealed something about the depth of the atoms below the surface", says Weismann. With this it was clear that Zheng had discovered a way to change the position of an atom by a single atom's width. "This is the first time a single atom is controllably moved within a crystal with atomic precision", Weismann stresses. "This ability will be helpful when designing nano structures in laboratories."
Along with their other findings, the scientists of Kiel University noted a behaviour that was similar to that of transistors. This component, which is used in computers by the million, usually requires three contact electrodes. When working with nano structures such as atoms, which measure only 0.3 nanometers, three electrodes would inevitably cause a short-circuit. "With the help of the STM we have discovered a method that only needs two electrodes, one of which is movable." This also is a major step for the handling of nano structures.
The study was financially supported by the Collaborative Research Center 855 "Magnetoelectric Composites - Future Biomagnetic Interfaces".
####
About Christian-Albrechts-Universitaet zu Kiel
When Duke Christian Albrecht of Holstein-Gottorp decided to found a university in 1665, the Thirty Years' War was over. The State required well-educated young men for service to government, who were to graduate from the new university. 140 students enrolled in the initially established faculties of Theology, Law, Medicine and Philosophy.
The University currently teaches over 24,000 women and men and the range of subjects on offer is spread over eight faculties. In addition to the original faculties, the faculties of Agricultural and Nutritional Science, Mathematics and Natural Sciences, Business, Economics and Social Sciences and, the newest faculty, the Faculty of Engineering are integrated into the university. Where once Max Planck and Heinrich Hertz worked, around 700 academics now pass on their knowledge to students from Germany and across the Globe.
For more information, please click here
Contacts:
Boris Pawlowski
Dr. Alexander Weismann
Kiel University
Institute of Experimental and Applied Physics
Phone: 0431/880-3966
Text:
Ann-Christin Wimber
Redaktionsbüro Alte Schule
www.alte-schule.info
Kiel University
Press, Communication and Marketing
Dr. Boris Pawlowski
text: Ann-Christin Wimber (Redaktionsbüro Alte Schule)
editor: Claudia Eulitz
Address: D-24098 Kiel, phone: +49 (0431) 880-2104
fax: +49 (0431) 880-1355
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Full bibliographic information
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||