Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cobalt catalysts allow researchers to duplicate the complicated steps of photosynthesis

Currently, the most efficient methods we have for making fuel – principally, hydrogen – from sunlight and water involve rare and expensive metal catalysts, such as platinum.
Currently, the most efficient methods we have for making fuel – principally, hydrogen – from sunlight and water involve rare and expensive metal catalysts, such as platinum.

Abstract:
Humans have for ages taken cues from nature to build their own devices, but duplicating the steps in the complicated electronic dance of photosynthesis remains one of the biggest challenges and opportunities for chemists.ated-steps-photosynthesis#sthash.kXv0hfDG.dpuf

Cobalt catalysts allow researchers to duplicate the complicated steps of photosynthesis

Argonne, IL | Posted on January 14th, 2014

Currently, the most efficient methods we have for making fuel - principally, hydrogen - from sunlight and water involve rare and expensive metal catalysts, such as platinum. In a new study, researchers at the U.S. Department of Energy's Argonne National Laboratory have found a new, more efficient way to link a less expensive synthetic cobalt-containing catalyst to an organic light-sensitive molecule, called a chromophore.

Although cobalt is significantly less efficient than platinum when it comes to light-induced hydrogen generation, the drastic price difference between the two metals makes cobalt the obvious choice as the foundation for a synthetic catalyst, said Argonne chemist Karen Mulfort.

"Cobalt doesn't have to be as efficient as platinum because it is just so much cheaper," she said.

The Argonne study wasn't the first to look at cobalt as a potential catalytic material; however, the paper did identify a new mechanism by which to link the chromophore with the catalyst. Previous experiments with cobalt attempted to connect the chromophore directly with the cobalt atom within the larger compound, but this eventually caused the hydrogen generation process to break down.

Instead, the Argonne researchers connected the chromophore to part of a larger organic ring that surrounded the cobalt atom, which allowed the reaction to continue significantly longer.

"If we were to directly link the chromophore and the cobalt atom, many of the stimulated electrons quickly fall out of the excited state back into the ground state before the energy transfer can occur," Mulfort said. "By coupling the two materials in the way we've described, we can have much more confidence that the electrons are going to behave the way we want them to."

One additional advantage of working with a cobalt-based catalyst, in addition to its relatively low price and abundance, is the fact that scientists understand the atomic-level mechanisms at play.

"There's a lot of different ways in which we already know we can modify cobalt-based catalysts, which is important because we need to make our devices more robust," Mulfort said.

Future studies in this arena could involve nickel- and iron-based catalysts - metals which are even more naturally abundant than cobalt, although they are not quite as effective natural catalysts. "We want to extrapolate from what we've gained by looking at this kind of linkage in respect to other catalysts," Mulfort said.

Mulfort and her Argonne colleagues used the high-intensity X-rays provided by the laboratory's Advanced Photon Source as well as precise spectroscopic techniques available at Argonne's Center for Nanoscale Materials.

A paper based on the study appeared in the journal Physical Chemistry Chemical Physics. The research was supported by DOE's Office of Science.

####

About DOE/Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the Office of Science website.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together, the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website.

For more information, please click here

Contacts:
Jared Sagoff

630-252-5549

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Laboratories

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Chemistry

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project