Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers find that computer components can be damaged by key manufacturing processes

Graeme Reaves
Graeme Reaves

Abstract:
MANUFACTURERS of increasingly minute computer chips, transistors and other products will have to take special note of research findings at the University of Huddersfield. The implications are that a key process used to transform the properties of nanoscale materials can cause much greater damage than previously realised.

Researchers find that computer components can be damaged by key manufacturing processes

Huddersfield, UK | Posted on January 8th, 2014

The University is home to the Electron Microscopy and Materials Analysis Research Group (EMMA), headed by Professor Stephen Donnelly. It has an advanced facility named MIAMI, which stands for Microscope and Ion Accelerators for Materials Investigation. It is used to bombard materials with ion beams and to examine the effects at the nanoscale.

During a recent experiment conducted by the team, including Research Fellow Dr Graeme Greaves, a number of gold nanorods - a thousand times smaller than a human hair - were irradiated with xenon atoms. They were a good subject for the experiment because nanowires or rods have a large surface area.

The findings were dramatic. "We were hoping to generate bubbles. We actually found that we were eroding the nanowires," said Dr Greaves.
And the rate of erosion - measured in terms of "sputtering yield", or how many atoms come out of matter for each incoming atom - was far in advance of expectations.

"The sputtering yield of a normal piece of flat gold should be of the order of 50 atoms per ion," said Dr Greaves. "In the case of rods we expected it to be greater, because the geometry is much reduced. We worked out that it should be higher by a factor of four, or something of that order. But we actually found that the greatest value measured was a sputtering yield of a thousand - a factor of 20."

The results were so dramatic that the Huddersfield team sought confirmation. They asked Professor Kai Nordlund(pictured right) of the University of Helsinki to run a molecular dynamics simulation, creating a virtual gold nanorod. The Finns were able to replicate the Huddersfield findings.
Now the experiment is the subject of an article in the leading journal Physical Letters Review, of Dr Greaves is the lead author.
"The research has considerable implications, particularly for medicine," said Dr Greaves.

"More and more people are working on nanostructures for practical applications. Gold nanoparticles can be used for tumour detection, the optimisation of the bio-distribution of drugs to diseased organs and a radiotherapy dose enhancer.
"Components of computer chips are very small nowadays - in the order of 20 nanometres in size and getting smaller - and ion beams are used to change the properties of these materials. Our research shows you must be very wary of the amount of damage that may be done."

####

For more information, please click here

Contacts:
Megan Beech

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project