Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles and their orbital positions

Abstract:
Physicists have developed a "planet-satellite model" to precisely connect and arrange nanoparticles in three-dimensional structures. Inspired by the photosystems of plants and algae, these artificial nanoassemblies might in the future serve to collect and convert energy.

Nanoparticles and their orbital positions

Munich, Germany | Posted on December 16th, 2013

If the scientists‘ nanoparticles were a million times larger, the laboratory would look like an arts and crafts room at Christmas time: gold, silver and colorful shiny spheres in different sizes and filaments in various lengths. For at the center of the nanoscale "planet-satellite model" there is a gold particle which is orbited by other nanoparticles made of silver, cadmium selenide or organic dyes.

As if by magic, cleverly designed DNA strands connect the satellites with the central planet in a very precise manner. The technique behind this, called "DNA origami", is a specialty of physics professor Tim Liedl (LMU Munich) and his team. Together with the group of Professor Jochen Feldmann (also LMU Munich) they introduced and analyzed this novel assembly scheme. Both groups are part of the cluster of excellence Nanosystems Initiative Munich (NIM).

Large or small, near or far

A distinctive feature of the new method is the modular assembly system which allows the scientists to modify all aspects of the structure very easily and in a controlled manner: the size of the central nanoparticle, the types and sizes of the "satellites" and the distance between planet and satellite particle. The approach also enables the physicists to adapt and optimize their system for other purposes.

Photonic systems

Metals, semiconductors or fluorescent organic molecules serve as satellites. Thus, like the antenna molecules in natural photosystems, such satellite elements might in future be organized to collect light energy and transfer it to a catalytic reaction center where it is converted into another form of energy. For the time being, however, the model allows the scientists to investigate basic physical effects such as the so-called quenching process, which refers to the changing fluorescence intensity of a dye molecule as a function of the distance to the central gold nanoparticle.

"The modular assembly principle and the high yield we obtained in the production of the planet-satellite systems were the crucial factors for reliably investigating this well-known effect with the new methods," explains Robert Schreiber, lead author of the study.

A whole new cosmos

In addition, the scientists succeeded in joining individual planet-satellite units together into larger arrays, while maintaining the combinatorial freedom. This way, it might be possible to develop complex and functional three-dimensional nanosystems, which could be used as Raman spectroscopy platforms, as plasmonic energy funnels or as nanoporous materials for catalytic applications.

####

For more information, please click here

Contacts:
Luise Dirscherl

49-892-180-2706

Copyright © Ludwig-Maximilians-Universität München

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The print version of the paper will be published as cover article in the January issue of Nature Nanotechnology:

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project