Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UNL-led team finds less is more with adding graphene to nanofibers

An illustration of the UNL team's research is featured in one of the frontispieces of the Dec. 10 issue of Advanced Functional Materials.
An illustration of the UNL team's research is featured in one of the frontispieces of the Dec. 10 issue of Advanced Functional Materials.

Abstract:
Figuring that if some is good, more must be better, researchers have been trying to pack more graphene, a supermaterial, into structural composites. Collaborative research led by University of Nebraska-Lincoln materials engineers discovered that, in this case, less is more.

UNL-led team finds less is more with adding graphene to nanofibers

Lincoln, NE | Posted on December 11th, 2013

The team, led by Yuris Dzenis, McBroom professor of mechanical and materials engineering and a member of UNL's Nebraska Center for Materials and Nanoscience, learned that using a small amount of graphene oxide as a template improves carbon nanomaterials which, in turn, promises to improve composite materials. Composites are used in everything from airplanes to bicycles and golf clubs.

Graphene is a one-atom thick layer of carbon with a crystalline structure that makes it exceptionally strong and an excellent heat and electrical conductor. It was the subject of research that earned the 2010 Nobel Prize in Physics.

UNL engineers collaborated with researchers from Northwestern University and Materials and Electrochemical Research Corp. of Tucson, Ariz., on this study. The UNL team developed a process to incorporate graphene oxide nanoparticles as a template to guide the formation and orientation of continuous carbon nanofibers, which should improve the fiber's properties. That process involves crumpling the graphene, like crumpling a sheet of paper, in a way that improves graphene as a templating and orientation agent. Only small amounts of crumpled graphene nanoparticles are needed. A group led by chemist SonBinh Nguyen of Northwestern synthesized the graphene oxide.

"Many people are trying to put as much graphene as possible into fibers," Dzenis said, adding that it is difficult to do. "But we did the unconventional thing: We used very small quantities followed by carbonization."

The resulting carbon nanofiber structure has an orientation similar to fibers with demonstrated enhanced strength and other properties, Dzenis said. He and his colleagues are now testing their graphene-based nanofibers for these enhanced properties as well as improving the technique.

The method is promising, he said. It could lower the cost of making composites significantly because it requires only small quantities of expensive nanoparticles and uses an inexpensive nanofiber manufacturing process, which was developed at UNL.

"All of this has potential for high-performance but, at the same time, low-cost carbon nanofibers," Dzenis said.

The team reported its findings in the Dec. 10 issue of Advanced Functional Materials. Co-authors are UNL mechanical and materials engineering colleagues Dimitry Papkov and Alexander Goponenko; facilities specialist Xing-Zhong Li of the Nebraska Center for Materials and Nanoscience; Owen C. Compton, Zhi An and SonBinh T. Nguyen of Northwestern; and Alexander Moravsky of Materials and Electrochemical Research Corp.

This research was funded by grants from the U.S. Army Research Office Multidisciplinary University Research Initiative, Air Force Office of Scientific Research and the National Science Foundation.

Writer: Gillian Klucas, Research and Economic Development

####

For more information, please click here

Contacts:
Yuris Dzenis
Professor
Mechanical and Materials Engineering
phone: 402-472-0713

Copyright © University of Nebraska–Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project