Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ancient Roman glass inspires modern science

Abstract:
A 1700-year-old Roman glass cup is inspiring University of Adelaide researchers in their search for new ways to exploit nanoparticles and their interactions with light.

Ancient Roman glass inspires modern science

Adelaide, Australia | Posted on November 21st, 2013

Researchers in the University's Institute for Photonics and Advanced Sensing (IPAS) are investigating how to best embed nanoparticles in glass - instilling the glass with the properties of the nanoparticles it contains.

"Nanoparticles and nanocrystals are the focus of research around the world because of their unique properties that have the potential to bring great advances in a wide range of medical, optical and electronic fields," says Associate Professor Heike Ebendorff-Heidepriem, Senior Research Fellow in the University's School of Chemistry and Physics. "A process for successfully incorporating nanoparticles into glass, will open the way for applications like ultra low-energy light sources, more efficient solar cells or advanced sensors that can see inside the living human brain."

"We will be able to more readily harness these nanoscale properties in practical devices. This gives us a tangible material with nanoparticle properties that we can shape into useful forms for real-world applications. And the unique properties are actually enhanced by embedding in glass."

The Lycurgus Cup, a 4th century cup held by the British Museum in London, is made of glass which changes colour from red to green depending on whether light is shining through the Cup or reflected off it. It gets this property from gold and silver nanoparticles embedded in the glass.

"The Lycurgus Cup is a beautiful artefact which, by accident, makes use of the exciting properties of nanoparticles for decorative effect," says Associate Professor Ebendorff-Heidepriem. "We want to use the same principles to be able to use nanoparticles for all sorts of exciting advanced technologies."

Nanoparticles need to be held in some kind of solution. "Glass is a frozen liquid," says Associate Professor Ebendorff-Heidepriem. "By embedding the nanoparticles in the glass, they are fixed in a matrix which we can exploit."

Associate Professor Ebendorff-Heidepriem is leading a three-year Australian Research Council Discovery Project to investigate how best to embed nanoparticles; looking at the solubility of different types of nanoparticles in glass and how this changes with temperature and glass type, and how the nanoparticles are controlled and modified.

The work builds on a past project with collaborators who are now at RMIT University.

"It was pure serendipity. We found by chance the right glass and the right conditions to embed nano-diamond into glass, creating a single photon source in a fibre form," says Associate Professor Ebendorff-Heidepriem. "Now we need to find the right conditions for other nanoparticles and other glasses."

####

For more information, please click here

Contacts:
Associate Professor Heike Ebendorff-Heidepriem

Senior Research Fellow
School of Chemistry and Physics
The University of Adelaide
Business: +61 8 8313 1136
Mobile: +61 439 336 214

Ms Robyn Mills

Media and Communications Officer
The University of Adelaide
Business: +61 8 8313 6341
Mobile: +61 410 689 084

Copyright © The University of Adelaide

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project