MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic nanoparticles could aid heat dissipation: Particles suspended in cooling water could prevent hotspots in nuclear plant cooling systems and electronics

Abstract:
Cooling systems generally rely on water pumped through pipes to remove unwanted heat. Now, researchers at MIT and in Australia have found a way of enhancing heat transfer in such systems by using magnetic fields, a method that could prevent hotspots that can lead to system failures. The system could also be applied to cooling everything from electronic devices to advanced fusion reactors, they say.

Magnetic nanoparticles could aid heat dissipation: Particles suspended in cooling water could prevent hotspots in nuclear plant cooling systems and electronics

Cambridge, MA | Posted on November 20th, 2013

The system, which relies on a slurry of tiny particles of magnetite, a form of iron oxide, is described in the International Journal of Heat and Mass Transfer, in a paper co-authored by MIT researchers Jacopo Buongiorno and Lin-Wen Hu, and four others.

Hu, associate director of MIT's Nuclear Reactor Laboratory, says the new results are the culmination of several years of research on nanofluids — nanoparticles dissolved in water. The new work involved experiments where the magnetite nanofluid flowed through tubes and was manipulated by magnets placed on the outside of the tubes.

The magnets, Hu says, "attract the particles closer to the heated surface" of the tube, greatly enhancing the transfer of heat from the fluid, through the walls of the tube, and into the outside air. Without the magnets in place, the fluid behaves just like water, with no change in its cooling properties. But with the magnets, the heat transfer coefficient is higher, she says — in the best case, about 300 percent better than with plain water. "We were very surprised" by the magnitude of the improvement, Hu says.

Conventional methods to increase heat transfer in cooling systems employ features such as fins and grooves on the surfaces of the pipes, increasing their surface area. That provides some improvement in heat transfer, Hu says, but not nearly as much as the magnetic particles. Also, fabrication of these features can be expensive.

The explanation for the improvement in the new system, Hu says, is that the magnetic field tends to cause the particles to clump together — possibly forming a chainlike structure on the side of the tube closest to the magnet, disrupting the flow there, and increasing the local temperature gradient.

While the idea has been suggested before, it had never been proved in action, Hu says. "This is the first work we know of that demonstrates this experimentally," she says.

Such a system would be impractical for application to an entire cooling system, she says, but could be useful in any system where hotspots appear on the surface of cooling pipes. One way to deal with that would be to put in a magnetic fluid, and magnets outside the pipe next to the hotspot, to enhance heat transfer at that spot.

"It's a neat way to enhance heat transfer," says Buongiorno, an associate professor of nuclear science and engineering at MIT. "You can imagine magnets put at strategic locations," and if those are electromagnets that can be switched on and off, "when you want to turn the cooling up, you turn up the magnets, and get a very localized cooling there."

While heat transfer can be enhanced in other ways, such as by simply pumping the cooling fluid through the system faster, such methods use more energy and increase the pressure drop in the system, which may not be desirable in some situations.

There could be numerous applications for such a system, Buongiorno says: "You can think of other systems that require not necessarily systemwide cooling, but localized cooling." For example, microchips and other electronic systems may have areas that are subject to strong heating. New devices such as "lab on a chip" microsystems could also benefit from such selective cooling, he says.

Going forward, Buongiorno says, this approach might even be useful for fusion reactors, where there can be "localized hotspots where the heat flux is much higher than the average."

But these applications remain well in the future, the researchers say. "This is a basic study at the point," Buongiorno says. "It just shows this effect happens."

The team also included Thomas McKrell, a research scientist in MIT's Department of Nuclear Science and Engineering, and Elham Doroodchi, Behdad Moghtaderi, and Reza Azizian of the University of Newcastle in Australia. The work was supported by the University of Newcastle, Granite Power Ltd., the Australian Research Council, and King Saud University in Saudi Arabia.


Written by: David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell
MIT News Office
s_mcd@mit.edu
phone: 617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids":

Jacopo Buongiorno:

Department of Nuclear Science and Engineering:

ARCHIVE: "Lin-Wen Hu: Advancing MIT’s educational mission":

ARCHIVE: "Finding the keys to boiling heat transfer":

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Safety-Nanoparticles/Risk management

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project