Home > Press > Tehran University Researcher Improves Contrast in Nanoparticles Imaging
Abstract:
An Iranian researcher from the University of Tehran succeeded in the improvement of contrast in nanoparticles imaging in liquid media which can be used as imaging instruction by applying atomic force microscope in liquid media.
The researcher achieved the results based on the proposed relation between the sensitivity of specific cantilevers mode to the toughness and softness of nanoparticles studied by him.
By using Euler-Bernoulli method and by taking into account the effects of hydrodynamic function in liquid media, an analytical correlation was presented to calculate cantilever resonance frequency. The results obtained from the correlation were compared to those obtained from experimental data. The study showed that the presented correlation was more precise, specially in low modes, in comparison to the previous correlations. Then, the sensitivity of cantilever specific modes to mechanical properties of nanoparticles, including Young Modules and their toughness and softness, was investigated as all. The instruction for the excitation of cantilever modes was proposed based on the obtained results and material properties to obtain better image contrast.
Excitation of higher modes in liquid media results in better image contrast depending on the thoroughness or softness of the material, or in other words, Young Modules of the material. Therefore, more precise information can be obtained from mechanical, physical, and chemical properties of nanoparticles by using excitation of higher modes in tough materials and excitation of first mode in soft materials.
The results can be used as an instruction for imaging by using atomic force microscope in liquid media. Results of the research have applications in industries and researches related to imaging and to the investigation of physical, chemical, and mechanical properties of nanoparticles in liquid media, which has direct connection with the field of nanobiotechnology, medical sciences, biology, metallurgy, and polymer sciences.
Results of the research have been published in December 2013 in Ultramicroscopy, vol. 135, pp. 84-88.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Industrial
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||