Home > Press > Have iPod, will test for drug toxicity: Rice students help Houston-based startup create drug toxicity app
![]() |
N3D's technology grows 3-D cell cultures using magnetic levitation. The technology relies on inert, nontoxic magnetic nanoparticles that attach to living cells. Magnets can then be used lift and suspend the cell cultures as they grow. CREDIT: Nano3D Biosciences |
Abstract:
Accurate and rapid testing for drug toxicity just became easier, thanks to a half-dozen Rice University student interns working at Houston-based startup Nano3D Biosciences (n3D).
The bioengineering and nanoscale physics students just wrapped up a yearlong effort to aid the company in developing a new method for conducting high-throughput, in vitro cytotoxicity assays. A research paper about the new method was published this month in Nature's open-access journal Scientific Reports.
"This would not have been possible without the students," said Glauco Souza, n3D's president and chief scientific officer. "They helped develop the scientific protocols and hardware for this, and they wrote both the iPod app and the analytic software."
The new assay method, which n3D has dubbed the "BiO Assay," uses a free iPod app to collect time-lapse images of 3-D cell cultures that have been exposed to varying levels of a drug. Those images are then fed through an analytical program that measures each sample and creates time-lapse movies, graphs and charts of the drug's cytotoxic profile.
"This literally collects about 100,000 data points during a 12-hour, overnight experiment," said study co-author Shane Neeley, a Rice bioengineering graduate student who has interned at n3D for nine months. "That's all relevant publishable data that relate to the different times, doses and cell types and other key variables in the experiment."
Souza and Rice faculty members Tom Killian and Robert Raphael co-founded n3D in 2008 based on technology they created to grow 3-D cell cultures using magnetic levitation. The technology relies on inert, nontoxic magnetic nanoparticles that attach to living cells. Magnets can then be used to lift and suspend the cells as they grow and divide.
The research is part of a growing trend to create better lab techniques for testing drug toxicity. At issue is the fact that the toxic side effects of many new drugs are discovered only during human clinical testing, which means tests on 2-D cell cultures and on lab animals failed to identify the toxicity risk in humans. Cells grown in 3-D cultures behave more like the body's native tissues, and scientists have scrambled to find ways of using 3-D cultures to reduce the need for animal testing and to rule out toxic drug candidates earlier.
"It's been estimated that improving the accuracy of early cytotoxicity screenings by even 10 percent could save drug companies as much as $100 million per drug," said study co-author Hubert Tseng '13, n3D's senior research scientist. Tseng, who interned with the company prior to earning his Ph.D. in bioengineering in March, played an instrumental role in developing several of the company's products, including the BiO Assay.
Souza said the company developed the BiO Assay out of necessity; Interns in the lab were spending hour after hour snapping photos of individual cell cultures on the microscope. Each experiment involved exposing a hundreds of cell cultures to varying doses of a drug. The microscopic images revealed how much smaller the culture became over time, as the toxic drug slowly killed off the cells in the colony. Each culture was grown in its own tiny chamber on standard plates that each contained 96 chambers.
"Without looking in the microscope, just looking at the camera and clicking like a robot, it would take 20 minutes to take pictures of all 96 wells on one plate," Souza said. "To analyze that, all 96, with a ruler, took even longer."
Study first authors David Timm '12 and Jianbo Chen '13, professional masters students in nanoscale physics, had to repeat that tedious process over and over, as often as possible, on dozens of 96-well plates that were being used in multiple experiments.
"We decided there had to be a better way, so we began experimenting with using an iPod," Souza said. "It was promising, but none of the available apps worked very well, so we decided we needed to make our own. I called Apple and asked them to give me the name of a developer here in Houston. When they heard where I was, they said, 'Don't (hire a developer). Go to Rice University and get a couple of students instead. You'll get a better app, and it will do exactly what you want.'"
Study co-author William Haisler '12 created the iPod app, which can snap photos every few seconds for days at a time. Neeley wrote analytical software processes the images Additional study co-authors include Killian, professor and chair of physics and astronomy; Raphael, professor of bioengineering; former Rice undergraduate David Sing '11; Jacob Gage of n3D; and Mehdi Dehghani and Kevin Rosenblatt, both of the University of Texas Health Science Center at Houston. The research was supported by the National Science Foundation's Small Business Innovation Research program and the Texas Emerging Technology Fund.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
david@rice.edu
Jade Boyd
713-348-6778
jadeboyd@rice.edu
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
A copy of the paper from Scientific Reports is available at:
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
New chip ramps up AI computing efficiency August 19th, 2022
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Software
Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |