Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A nanofibrous conduit suitable for repair of long-segment sciatic nerve defects

Abstract:
Autografts or allografts are commonly used in neurosurgery. Unfortunately, autografts have limitations such as body injury, repeated surgeries and disproportion of grafted nerve tissue in terms of size and structure. In addition, a similar problem, i.e., stimulation of the immune system, will be encountered in transplantation of allografts or xenografts. Some studies used artificial nerve conduits to repair nerve defects. Among the artificial nerve conduits used, nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) conduits exhibit several advantages. One advantage of these nerve conduits is that they can be bent to an angle of up to 180˚ and then restore to their original shape, which is necessary for adaptation inside a living system. Moreover, the PHBV conduits have a thin wall and a highly porous structure, which are important determinants for nutrient transport into the conduit. A further advantage is that they can be easily fabricated and rolled to any required length and diameter by heat processing. Dr. Esmaeil Biazar and team from Islamic Azad University, Tonekabon, Iran used nanofibrous PHBV conduit and autologous sciatic nerve to bridge 30-mm-long rat sciatic nerve gaps. Within 4 months after surgery, rat sciatic nerve functional recovery was evaluated per month by behavioral analyses. Results showed that rat sciatic nerve functional recovery was similar after nanofibrous PHBV conduit and autologous nerve grafting. These findings, published in the Neural Regeneration Research (Vol. 8, No. 27, 2013), suggest that nanofibrous PHBV conduit is suitable in use for repair of long-segment sciatic nerve defects.

A nanofibrous conduit suitable for repair of long-segment sciatic nerve defects

Shenyang, PR China | Posted on October 28th, 2013

Article: " Efficacy of nanofibrous conduits in repair of long- segment sciatic nerve defects," by Esmaeil Biazar1, Saeed Heidari Keshel2, 3, Majid Pouya4 (1 Department of Biomaterial Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran; 2 Student Research Committee, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; 3 Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 4 Faculty of Medical Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran)

Biazar E, Heidari SK, Pouya M. Efficacy of nanofibrous conduits in repair of long-segment sciatic nerve defects. Neural Regen Res. 2013;8(27):2501-2509.

####

For more information, please click here

Contacts:
Meng Zhao

86-138-049-98773
Neural Regeneration Research

Copyright © Neural Regeneration Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full text:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project