Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NEI Product Update for Solid Electrolyte Powder – NANOMYTE® SSE-10 (Li10SnP2S12)

Abstract:
NEI Corporation announced today that over the past five months since the product launch of NANOMYTE® SSE-10, it has further enhanced the ionic conductivity of the solid electrolyte powder by an order of magnitude higher at room temperature. The ionic conductivity at room temperature, in a compact pellet form, is 12 mS/cm (Conductivity vs. T). The ionic conductivity is similar to that of a liquid electrolyte, but the use of a solid state electrolyte, such as SSE-10, eliminates the flammability issue associated with currently used liquid electrolytes. The updated materials specification sheet for SSE-10 can be found here.

NEI Product Update for Solid Electrolyte Powder – NANOMYTE® SSE-10 (Li10SnP2S12)

Somerset, NJ | Posted on October 24th, 2013

On May 14th, 2013, NEI Corporation had announced that the patent pending new material, Lithium-Tin- Phosphorous-Sulfide (Li10SnP2S12 or LSPS), was available for sale in powder form. LSPS belongs to a family of "superionic" solids which conduct lithium-ions at room temperature. Sulfide compounds with high Li-ion conductivity are not commonly available, and as such, the development of solid state electrolyte-based Li-ion batteries has been plagued by the lack of widespread availability of these difficult-to-produce materials. NEI has utilized its extensive background in the synthesis of advanced materials to develop a process for producing sulfide materials in a form that allows them to be used in Li-ion cells.

"By making solid state electrolyte powders readily available, our intent is to make it easy for Li-ion battery researchers to develop the next generation of all-solid-state Li-ion batteries," said Dr. Ganesh Skandan, CEO of NEI Corporation. He added, "The NEI process is amenable to synthesizing variants of LSPS, such as compositional, morphology, and particle size changes."

####

About NEI Corporation
NEI Corporation is an application driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale materials and prototyping products that incorporate the advanced materials. NEI Corporation offers cathode and anode materials (both powders and coated electrodes), and solid state electrolytes for use in lithium-ion batteries. We produce battery materials through our scalable and economical solid state synthesis process, which is adaptable to different materials compositions and particle morphologies.

For more information, please click here

Contacts:
Ms. Krista Martin
NEI Corporation
(732) 868‐3141

Copyright © NEI Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project