Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CU-Boulder researchers develop 4-D printing technology for composite materials

Abstract:
Researchers at the University of Colorado Boulder have successfully added a fourth dimension to their printing technology, opening up exciting possibilities for the creation and use of adaptive, composite materials in manufacturing, packaging and biomedical applications.

CU-Boulder researchers develop 4-D printing technology for composite materials

Boulder, CO | Posted on October 24th, 2013

A team led by H. Jerry Qi, associate professor of mechanical engineering at CU-Boulder, and his collaborator Martin L. Dunn of the Singapore University of Technology and Design has developed and tested a method for 4D printing. The researchers incorporated "shape memory" polymer fibers into the composite materials used in traditional 3D printing, which results in the production of an object fixed in one shape that can later be changed to take on a new shape.

"In this work, the initial configuration is created by 3D printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration - the 4D aspect," said Dunn, a former CU-Boulder mechanical engineering faculty member who has studied the mechanics and physics of composite materials for more two decades.

The 4D printing concept, which allows materials to "self-assemble" into 3D structures, was initially proposed by Massachusetts Institute of Technology faculty member Skylar Tibbits in April of this year. Tibbits and his team combined a strand of plastic with a layer made out of "smart" material that could self-assemble in water.

"We advanced this concept by creating composite materials that can morph into several different, complicated shapes based on a different physical mechanism," said Dunn. "The secret of using shape memory polymer fibers to generate desired shape changes of the composite material is how the architecture of the fibers is designed, including their location, orientation and other factors."

The CU-Boulder team's findings were published last month in the journal Applied Physics Letters. The paper was co-authored by Qi "Kevin" Ge, who joined MIT as a postdoctoral research associate in September.

"The fascinating thing is that these shapes are defined during the design stage, which was not achievable a few years ago," said Qi.

The CU-Boulder team demonstrated that the orientation and location of the fibers within the composite determines the degree of shape memory effects like folding, curling, stretching or twisting. The researchers also showed the ability to control those effects by heating or cooling the composite material.

Qi says 3D printing technology, which has existed for about three decades, has only recently advanced to the point that active fibers can be incorporated into the composites so their behavior can be predictably controlled when the object is subjected to thermal and mechanical forces.

The technology promises exciting new possibilities for a variety of applications. Qi said that a solar panel or similar product could be produced in a flat configuration onto which functional devices can be easily installed. It could then be changed to a compact shape for packing and shipping. After arriving at its destination, the product could be activated to form a different shape that optimizes its function.

As 3D printing technology matures with more printable materials and higher resolution at larger scales, the research should help provide a new approach to creating reversible or tunable 3D surfaces and solids in engineering like the composite shells of complex shapes used in automobiles, aircraft and antennas.

####

For more information, please click here

Contacts:
Jerry Qi
720-470-9816


Courtney Staufer
CU engineering communications
303-492-7190

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

3D-printed decoder, AI-enabled image compression could enable higher-res displays December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project