Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BGT launches the world's first graphene based Field Effect Transistor (GFET)

Abstract:
Bluestone Global Tech announced a new groundbreaking product today, the world's first graphene based Field Effect Transistor. BGT's Grat-FET is a wafer with 9 different GFET chips (or FET arrays), each with 64 FETs. Grat-FET is aimed towards research and development work and not for commercial production.

BGT launches the world's first graphene based Field Effect Transistor (GFET)

Wappingers Falls, NY | Posted on October 10th, 2013

BGT's GFETs are fabricated (using CVD) on a silicon wafer covered with a SiO2 layer. The high mobility (2000 cm2/Vs or more) graphene is used as the transistor channel. Each transistor consists of three terminals: source and drain metal electrodes and a global back gate.

Grat-FETs achieve both n-type and p-type transport when biased with a proper gate voltage at the substrate. Each chip contains nine different graphene channel length/width arrangements, which should accommodate different development settings.

####

For more information, please click here

Contacts:
US Headquarters
169 Myers Corners Rd.
Suite #210
Wappingers Falls, NY 12590
P: +1-845-632-6326
F: +1-845-632-6330
E:

Taiwan Office
R307 Incubation Center
Tainan Science Park Rd.
12th Floor
74147 Tainan City, Taiwan
P: +886-06-5055009
F: +886-06-5055010
E:

Copyright © graphene-info.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the original release at graphene-info.com:

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project