Home > Press > Researchers produce nanostructures with potential to advance energy devices
![]() |
Abstract:
New types of nanostructures have shown promise for applications in electrochemically powered energy devices and systems, including advanced battery technologies.
One process for making these nanostructures is dealloying, in which one or more elemental components of an alloy are selectively leached out of materials.
Arizona State University researchers Karl Sieradzki and Qing Chen have been experimenting with dealloying lithium-tin alloys, and seeing the potential for the nanostructures they are producing to spark advances in lithium-ion batteries, as well as in expanding the range of methods for creating new nanoporous materials using the dealloying process.
Their research results are detailed in a paper they co-authored that was recently published on the website of the prominent science and engineering journal Nature Materials (Advance online publication).
Sieradzki is a materials scientist and professor in the School for Engineering of Matter, Transport and Energy, one of ASU's Ira A. Fulton Schools of Engineering.
Chen earned his doctoral degree in materials science at ASU last spring and is now a postdoctoral research assistant.
Nanoporous materials made by dealloying are comprised of nanometer-scale zigzag holes and metal. These structures have found application in catalysis (used to increase the rate of chemical reactions) as well as actuation (used to mechanically move or control various mechanisms or systems) and supercapacitors (which provide a large amount of high electrical capacity in small devices).
They could also improve the performance of electrochemical sensing technology and provide more resilient radiation damage-resistant materials.
The nanostructures that Sieradzki and Chen have produced by dealloying lithium-tin alloys allows for more efficient transport and storage of the electric charge associated with lithium, while the small size prevents fracture of the tin reservoir that serves as a storage medium for lithium.
Lithium-ion batteries are one of the leading types of rechargeable batteries. They are widely used in consumer products, particularly portable electronics, and are being increasingly used in electric vehicles and aerospace technologies.
Sieradzki and Chen say that with more research and development the porous nanostructures produced by dealloying lithium alloys could provide a lithium-ion battery with improved energy-storage capacity and a faster charge and discharge - enabling it to work more rapidly.
One major advantage is that the porous nanostructures providing this electrochemical power boost can evolve spontaneously during tunable dealloying processing conditions. This, Sieradzki explains, opens up possibilities for developing new nanomaterials that could have a multitude of technological applications.
"There are a lot of metals that scientists and engineers have not be able to make nanoporous," he says. "But it turns out that with lithium you can lithiate and de-lithiate a lot of materials, and do it easily at room temperature. So this could really broaden the spectrum for what's possible in making new nanoporous materials by dealloying."
####
For more information, please click here
Contacts:
Joe Kullman
480-965-8122
Copyright © Arizona State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |