Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Abstract:
Iranian chemical engineering experts presented an industrial approach to reduce the agglomeration of the particles during the fluidization process by studying the fluidization behavior of silver oxide nanoparticle agglomerates and using computational fluid dynamics (CFD) simulation method.

Semi-Industrial Plan Devised to Produce Inorganic Metallic Nano Oxides

Tehran, Iran | Posted on September 5th, 2013

Results of this research can be widely used in various industries such as petrochemical engineering, pharmaceutics, production of chemical powders at semi-industrial and industrial scales, color industry and ceramics.

The research was carried out to investigate the fluidization behavior of silver oxide nanoparticle agglomerates to present approaches to reduce the amount of particle agglomeration during the fluidization process through the two viewpoints of laboratorial scale and computational fluid dynamics (CFD) simulation.

In order to carry out the research, silver oxide nanoparticles with initial particle size of about 30 nm, which were produced from a chemical solution, were at the first stage inserted into a fluidized bed then dried by blowing warm air into the bed. The undesirable agglomeration phenomenon during the drying process and the fluidization of nanoparticles causes the particles to stick together and to form larger bulks. As a result, the size of the secondary particles increases and their effective properties reduce. Therefore, in order to overcome this problem, the researchers tried to minimize the amount of agglomeration during the fluidization of the particles by improving the hydrodynamic properties of the bed, including porosity, velocity of inlet gas, initial filling amount, and geometric design of the bed.

Among the most important results of the research, mention can be made of the determination of optimum hydrodynamic conditions to decrease the amount of agglomeration of nanoparticles at laboratorial and simulation scales, and the investigation of the existing hydrodynamic models to study the fluidization behavior of silver oxide nanoparticle agglomerates to be used in the semi-industrial production of chemical powders.

Results of the research have been published on 10 May 2013 in Industrial Engineering Chemistry Research, vol. 52, issue 22. For more information about the details of the research, study the full article on pages 7569-7578 on the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project